Simulation of three-tier system "power-society" based on cellular automata
Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 119-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper we consider construction and primary research of the stochastic cellular automaton based version of the "power-society" model, describing the dynamics of power distribution in a hierarchy. We herein formulate basic principles of the model and present a simulation system for numeric experiments. It is shown that most properties of the deterministic model that is a system of differential equations are inherited by the cellular automaton model, which is also shows a possibility to attract power distribution to a solution, proved to be unstable in the classical model.
Keywords: "power-society" system, cellular automata, numerical experiment
Mots-clés : simulation.
@article{MM_2016_28_3_a7,
     author = {A. P. Petrov and M. E. Stepantsov},
     title = {Simulation of three-tier system "power-society" based on cellular automata},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {119--132},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a7/}
}
TY  - JOUR
AU  - A. P. Petrov
AU  - M. E. Stepantsov
TI  - Simulation of three-tier system "power-society" based on cellular automata
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 119
EP  - 132
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a7/
LA  - ru
ID  - MM_2016_28_3_a7
ER  - 
%0 Journal Article
%A A. P. Petrov
%A M. E. Stepantsov
%T Simulation of three-tier system "power-society" based on cellular automata
%J Matematičeskoe modelirovanie
%D 2016
%P 119-132
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_3_a7/
%G ru
%F MM_2016_28_3_a7
A. P. Petrov; M. E. Stepantsov. Simulation of three-tier system "power-society" based on cellular automata. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 119-132. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a7/

[1] A. P. Mikhailov, “Matematicheskoe modelirovanie vlasti v ierarkhicheskikh strukturakh”, Matem. modelirovanie, 6:6 (1994), 108–138 | MR | Zbl

[2] A. A. Samarskii, A. P. Mikhailov, Matematicheskoe modelirovanie: Idei. Metody. Primery, Nauka, M., 2001, 320 pp.

[3] A. P. Mikhailov, Modelirovanie sistemy «vlast-obshchestvo», Fizmatlit, M., 2006, 144 pp.

[4] A. P. Petrov, “O modeli «vlast-obshchestvo» s periodicheskoi funktsiei reaktsii grazhdanskogo obshchestva”, Matematicheskoe modelirovanie, 20:11 (2008), 80–88

[5] A. P. Mikhailov, A. P. Petrov, “Povedencheskie gipotezy v matematicheskom modelirovanii sotsialnykh protsessov”, Sotsiologiia, 2010, no. 3, 160–167

[6] T. Toffoli, “Cellular automata as an alternative to (rather than an approximation of) differential equations in modeling physics”, Physica, 1OD (1984), 117–127 | MR | Zbl

[7] M. E. Stepantsov, “Kletochnye avtomaty i ikh primenenie pri izuchenii sotsialnykh protsessov”, Modelirovanie sotsialno-politicheskoi i ekonomicheskoi dinamiki, RGSU, M., 2004, 224 pp.

[8] M. E. Stepantsov, “Matematicheskaia model napravlennogo dvizheniia gruppy liudei”, Matematicheskoe modelirovanie, 16:3 (2004), 43–49 | Zbl

[9] M. G. Dmitriev, G. S. Zhukova, A. P. Petrov, “Asimptoticheskii analiz modeli “vlast-ob-shchestvo” dlia sluchaia dvukh ustoichivykh raspredelenii vlasti”, Matematicheskoe modelirovanie, 16:5 (2004), 23–34 | MR

[10] T. Toffoli, N. Margolus, Mashiny kletochnykh avtomatov, Mir, M., 1991

[11] A. B. Vasileva, V. F. Butuzov, Asimptoticheskie metody v teopii singuliapnykh vozmushchenii, Vysshaia shkola, M., 1990 | MR

[12] M. G. Dmitriev, A. A. Pavlov, A. P. Petrov, “Model «vlast-obshchestvo-ekonomika» dlia sluchaia slabo korrumpirovannoi diskretnoi ierarkhii”, Matematicheskoe modelirovanie, 24:2 (2012), 120–128 | MR | Zbl