Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_3_a6, author = {A. V. Kolesnichenko}, title = {Modification in the framework of nonadditive {Tsallis} statistics of the gravitational instability criterions of astrophysical disks}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {96--118}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a6/} }
TY - JOUR AU - A. V. Kolesnichenko TI - Modification in the framework of nonadditive Tsallis statistics of the gravitational instability criterions of astrophysical disks JO - Matematičeskoe modelirovanie PY - 2016 SP - 96 EP - 118 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a6/ LA - ru ID - MM_2016_28_3_a6 ER -
%0 Journal Article %A A. V. Kolesnichenko %T Modification in the framework of nonadditive Tsallis statistics of the gravitational instability criterions of astrophysical disks %J Matematičeskoe modelirovanie %D 2016 %P 96-118 %V 28 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_3_a6/ %G ru %F MM_2016_28_3_a6
A. V. Kolesnichenko. Modification in the framework of nonadditive Tsallis statistics of the gravitational instability criterions of astrophysical disks. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 96-118. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a6/
[1] A. V. Kolesnichenko, M. Ja. Marov, “Modeling of aggregation of fractal dust clusters in laminar protoplanetary disk”, Solar. Syst. Res., 47:2 (2013), 80–98 | DOI
[2] A. Toomre, “On the gravitational stability of a disk of stars”, Astrophys. J., 139 (1964), 1217–1238 | DOI
[3] V. S. Safronov, Jevoljucija doplanetnogo oblaka i obrazovanie Zemli i planet, Nauka, M., 1969, 244 pp.
[4] P. Goldrich, W. R. Ward, “The formation of planetesimals”, Astrophys. J., 183:3 (1973), 1051–1061 | DOI
[5] T. Nakamoto, Y. Nakagawa, “Formation, early evolution, and gravitational stability of protoplanetary disks”, Astrophys. J., 421 (1994), 640–651 | DOI
[6] O. M. Guilera, G. C. de El'{\i}a, A. Brunini, P.J. Santamar'{\i}a, The role of planetesimal fragmentation on giant planet formation, 2014, 15 pp., arXiv: 1401.7738v1 [astro-ph.EP]
[7] N. J. Turner, S. Fromang, C. Gammie, H. Klahr, G. Lesur, M. Wardle, X-N. Bai, Transport and Accretion in Planet-Forming Disks, 2014, 24 pp., arXiv: 1401.7306v1 [astro-ph.EP]
[8] C. Dominik, J. Blum, J. Cuzzi, G. Wurm, “Growth of dust as the initial step toward planet formation”, Protostars and Planets V, Arizona Press, AZ, 2007
[9] S. Wolf, F. Malbet, R. Alexander, J.-Ph. Berger, M. Creech-Eakman, G. Duchene, A. Dutrey, C. Mordasini, E. Pantin, F. Pont, J.-U. Pott, E. Tatulli, L. Testi, Circumstellar disks and planets Science cases for nextgeneration optical/infrared long base line Interferometers, 2012, 83 pp., arXiv: 1203.6271v1 [astro-ph.IM]
[10] J. A. S. Lima, R. Silva, J. Santos, “Jeans' gravitational instability and nonextensive kinetic theory”, Astronomy and Astrophysics, 396 (2002), 309–313 | DOI | Zbl
[11] M. Sakagami, A. Taruya, “Self-gravitating stellar systems and nonextensive thermostatistics”, Continuum Mechanics and Thermodynamics, 16:3 (2004), 279–292 | DOI | MR | Zbl
[12] K. Nobuyoshi, K. Shigeo, K. Takahiro, “Nonequilibrium process of self-gravitating N-body systems and quasi-equilibrium structure using normalized q-expectation values for Tsallis' generalized entropy”, J. of Physics: Conference Series, 201:1 (2010), 012009
[13] D. B. de Freitas, J. R. de Medeiros, “Nonextensivity in the solar neighborhood”, Europhysics Letters, 97:1 (2012), 19001 | DOI
[14] A. I. Olemskoj, Sinergetika slozhnyh sistem: Fenomenologija i statisticheskaja teorija, KRASAND, M., 2009, 384 pp.
[15] P. Bak, How nature works: The science of self-organized criticality, Springer-Verlag, New York, 1996, 276 pp. | MR | Zbl
[16] C. Tsallis, “Possible generalization of Boltzmann–Gibbs statistics”, J. Stat. Phys., 52 (1988), 479–487 | DOI | MR | Zbl
[17] E. M. F. Curado, C. Tsallis, “Generalized statistical mechanics: connection with thermodynamics”, J. Phys. A, 24 (1991), L69–L72 | DOI | MR
[18] C. Tsallis, R. S. Mendes, A. R. Plastino, “The role of constraints within generalized Nonextensive statistics”, Physica A, 261 (1998), 534–554 | DOI | MR
[19] S. J. Weidenschilling, “Dust to planetesimals: Settling and coagulation in the solar nebula”, Icarus, 44 (1980), 172–189 | DOI
[20] Y. Nakagawa, K. Nakazawa, C. Hayashi, “Growth and sedimentation of dust grains in the primordial solar nebula”, Icarus, 45 (1981), 517–528 | DOI
[21] Y. Nakagawa, C. Hayashi, K. Nakazawa, “Accumulation of planetesimals in the solar nebula”, Icarus, 54 (1983), 361–376 | DOI
[22] Y. Nakagawa, M. Sekiya, C. Hayashi, “Settling and growth of dust particles in a laminar phase of a low-mass Solar nebula”, Icarus, 67 (1986), 375–390 | DOI
[23] J. Blum, “Grain growth and coagulation”, Astrophysics of Dust, ASP Conf. Ser., 309, eds. A. N. Witt, G. C. Clayton, B. T. Draine, ASP, San Francisco, 2004, 369
[24] C. W. Orme, M. Spaans, A. G. G. M. Tielens, “Dust coagulation in protoplanetary disks: porosity matters”, Astron. Astrophys, 461 (2007), 215–236 | DOI
[25] T. Suyama, K. Wada, H. Tanaka, “Numerical simulation of density evolution of dust aggregates in protoplanetary disks. I: Headon collisions”, Astroph. J., 684 (2008), 1310–1322 | DOI
[26] T. Suyama, K. Wada, H. Tanaka, S. Okuzumi, Geometrical cross sections of dust aggregates and a compression model for aggregate collisions, 2012, 28 pp., arXiv: 1205.1894v1 [astro-ph.EP]
[27] K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, “Simulation of dust aggregate collisions. ii. compression and disruption of three-dimensional aggregates in head-on collisions”, Astrophys. J., 677 (2008), 1296–1308 | DOI
[28] K. Wada, H. Tanaka, T. Suyama, H. Kimura, T. Yamamoto, “Collisional growth conditions for dust aggregates”, Astrophys. J., 702 (2009), 1490–1501 | DOI
[29] S. Okuzumi, H. Tanaka, M.-A. Sakagami, “Numerical modeling of the coagulation and porosity evolution of dust aggregates”, ApJ., 707 (2009), 1247–1264 | DOI
[30] S. Okuzumi, H. Tanaka, T. Takeuchu, M.-A. Sakagami, “Electrostatic barrier against dust growth in protoplanetary disks. 1: Classifying the evolution of size distribution”, ApJ., 731 (2011), 95 | DOI
[31] A. Kataoka, H. Tanaka, S. Okuzumi, K. Wada, “Static compression of porous dust aggregates”, Protostars and Planets VI, Heidelberg, 2013, Poster #2B0929, arXiv: 1307.7984v2 [astro-ph.EP]
[32] A. Kataoka, H. Tanaka, S. Okuzumi, K. Wada, “Fluffy dust forms icy planetesimals by static compression”, Astronomy Astrophysics, 557 (2013), id.L4, 4 pp., arXiv: 1307.7984v2 [astro-ph.EP]
[33] V. E. Tarasov, Fractional Dynamics. Applications of fractional calculus to dynamics of particles, fields and media, Springer, Berlin, 2010, 567 pp. | MR | Zbl
[34] A. V. Kolesnichenko, “On construction of the entropy transport model based on the formalism of nonextensive statistics”, Math. Models and Comp. Simulations, 6:6 (2014), 587–597 | DOI | MR
[35] V. E. Tarasov, “Fractional hydrodynamic equations for fractal media”, Ann. Phys., 318 (2005), 286–307 | DOI | MR | Zbl
[36] A. I. Olemskoi, “Axiomatic theory of self-organizing system”, Physics A, 310 (2002), 223–233 | DOI | Zbl
[37] B. M. Boghosian, “Thermodynamic description of the relaxation of two-dimensional turbulence using Tsallis statistics”, Phys. Rev. E, 53 (1996), 47–54 | DOI
[38] T. Arimitsu, N. Arimitsu, “Analysis of turbulence by statistics based on generalized Entropies”, Physica A, 295 (2001), 177 | DOI | MR | Zbl
[39] B. M. Boghosian, “Navier–Stokes Equations for Generalized Thermostatistics”, Bras. J. Phys., 29:1 (1999), 91–107
[40] N. N. Bogoljubov, Problems of Dynamic Theory in Statistical Physics, Technical Information Service, Oak Ridge, TN, 1960
[41] A. G. Morozov, “Dissipativnye jeffekty v gazovyh podsistemakh ploskikh galaktik”, Astron. Zhurn., E.59 (1982), 864–869 | Zbl
[42] A. G. Morozov, “Lokal'nyi kriterii ustojchivosti gazovykh podsistem ploskikh galaktik”, Astron. Zhurn., E.62 (1985), 209–217
[43] A. M. Fridman, A. V. Hoperskov, Fizika galakticheskikh diskov, Fizmatlit, M., 2011, 640 pp.
[44] A. M. Fridman, O. V. Khoruzhii, V. A. Minin, E. V. Polyachenko, V. L. Polyachenko, O. K. Sil'chenko, A. V. Zasov, V. L. Afanasiev, S. N. Dodonov, A. V. Moiseev, J. Boulesteix, J. Knape, “New Structures in Galactic Disks: Predictions and Discoveries”, Galaxy Disks and Disk Galaxies, ASP Conf. Series, 230, Astronomical Society of the Pacific, 2001, 187–198
[45] A. M. Fridman, V. L. Polyachenko, Physics of gravitating system, v. 1, Springer-Verlag, N. Y., 1984, 468 pp. ; v. 2, 358 pp. | MR
[46] A. M. Fridman, A. A. Boyarchuk, D. V. Bisikalo, O. A. Kuznetsov, Yu. M. Torgashin, A. A. Kilpio, “From hydrodynamical instability to turbulent viscosity in accretion disks”, Plasmas in the laboratory and in the universe: New insights and new challenges, AIP Conference Proceedings, 703, 2004, 250–259 | DOI
[47] A. M. Fridman, N. N. Gor'kavyi, Physics of Planetary Rings. Celestial Mechanics of Continuous Media, Springer, New York, 1999, 431 pp. | Zbl
[48] P. J. E. Peebles, Principles of Physical Cosmology, Princeton U. Press, Princeton, 1993, 718 pp. | MR