Cell-centered quasi one-dimensional reconstruction scheme on 3D hybrid meshes
Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 79-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents a cell-centered conservative scheme based on the quasi one-dimensional reconstruction of variables for solving systems of hyperbolic equations on 3D unstructured meshes. Only case of smooth solutions is considered. For the test problem this scheme proves to be similar to the vertex-centered EBR schemes at accuracy and computational cost. Slight superiority of vertex- or cell-centered scheme is determined by prevalent type of elements in the computational mesh.
Keywords: high-accuracy schemes, unstructured meshes.
@article{MM_2016_28_3_a5,
     author = {P. A. Bakhvalov and T. K. Kozubskaya},
     title = {Cell-centered quasi one-dimensional reconstruction scheme on {3D} hybrid meshes},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--95},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a5/}
}
TY  - JOUR
AU  - P. A. Bakhvalov
AU  - T. K. Kozubskaya
TI  - Cell-centered quasi one-dimensional reconstruction scheme on 3D hybrid meshes
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 79
EP  - 95
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a5/
LA  - ru
ID  - MM_2016_28_3_a5
ER  - 
%0 Journal Article
%A P. A. Bakhvalov
%A T. K. Kozubskaya
%T Cell-centered quasi one-dimensional reconstruction scheme on 3D hybrid meshes
%J Matematičeskoe modelirovanie
%D 2016
%P 79-95
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_3_a5/
%G ru
%F MM_2016_28_3_a5
P. A. Bakhvalov; T. K. Kozubskaya. Cell-centered quasi one-dimensional reconstruction scheme on 3D hybrid meshes. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 79-95. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a5/

[1] T. J. Barth, P. O. Frederickson, High order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Paper, No 90-0013, 1990

[2] C. Hu, C.-W. Shu, Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes, NASA/CR-1998-208459. ICASE Report No 98-32 | MR

[3] M. Dumbser, M. Kaser, V. A. Titarev, E. F. Toro, “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, Journal of Computational Physics, 221:2 (2007), 693–723 | DOI | MR | Zbl

[4] P. Tsoutsanis, V. A. Titarev, D. Drikakis, “WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions”, Journal of Computational Physics, 230 (2011), 1585–1601 | DOI | MR | Zbl

[5] V. A. Titarev, “Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes”, Comp. Math. and Mathematical Physics, 50:10 (2010), 1719–1733 | DOI | MR | Zbl

[6] B. Cockburn, C.-W. Shu, “Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems”, Journal of scientific computing, 16:3 (2001), 173–261 | DOI | MR | Zbl

[7] H. L. Atkins, C.-W. Shu, “Quadrature-Free Implementation of Discontinuous Galerkin Method for Hyperbolic Equations”, AIAA journal, 36:5 (1998) | DOI

[8] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Limiter povyshennogo poryadka tochnosti dlya razryvnogo metoda Galerkina na treugolnih setkah”, Keldysh Institute preprints, 2013, 053, 26 pp.

[9] J.X. Qiu, C.-W. Shu, “A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters”, SIAM Journal of scientific computing, 27 (2005), 995–1013 | DOI | MR | Zbl

[10] I. V. Abalakin, T. K. Kozubskaya, “Skhema povyshennoi tochnosti na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennih dlia resheniia zadach aerodinamiki i aeroakustiki na tetraedralnih setkax”, Matematicheskoe modelirovanie, 25:8 (2013), 109–136 | MR

[11] B. Koobus, F. Alauzet, A. Dervieux, “Numerical algorithms for unstructured meshes”, Computational Fluid Dynamics, ed. F. Magoules, CRC Press, 2011, 131–203 | DOI | Zbl

[12] P. A. Bakhvalov, “Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems”, Mathematical Models and Computer Simulations, 6:2 (2014), 192–202 | DOI | MR

[13] P. A. Bakhvalov, T. K. Kozubskaya, “Ekonomichnaya formulirovka shem s kvazindnomernoi rekonstruktsiei peremennih”, Keldysh Institute preprints, 2013, 089, 16 pp. | Zbl

[14] N. Gourvitch, G. Roge, I. Abalakin, A. Dervieux, T. Kozubskaya, A tetrahedral-based superconvergent scheme for aeroacoustics, INRIA Report 5212, 2004

[15] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservations laws, ICASE report No 97-65, 1997 | MR

[16] C. Le Touse, A. Murrone, H. Guillard, “Multislope MUSCL method for general unstructured meshes”, Journal of Computational Physics, 284 (2015), 389–418 | DOI | MR

[17] A. Danilov, Y. Vassilevski, “A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes”, Russ. J. Numer. Anal. Math. Modelling, 24:3 (2009), 207–227 | DOI | MR | Zbl