Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_3_a5, author = {P. A. Bakhvalov and T. K. Kozubskaya}, title = {Cell-centered quasi one-dimensional reconstruction scheme on {3D} hybrid meshes}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {79--95}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a5/} }
TY - JOUR AU - P. A. Bakhvalov AU - T. K. Kozubskaya TI - Cell-centered quasi one-dimensional reconstruction scheme on 3D hybrid meshes JO - Matematičeskoe modelirovanie PY - 2016 SP - 79 EP - 95 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a5/ LA - ru ID - MM_2016_28_3_a5 ER -
P. A. Bakhvalov; T. K. Kozubskaya. Cell-centered quasi one-dimensional reconstruction scheme on 3D hybrid meshes. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 79-95. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a5/
[1] T. J. Barth, P. O. Frederickson, High order solution of the Euler equations on unstructured grids using quadratic reconstruction, AIAA Paper, No 90-0013, 1990
[2] C. Hu, C.-W. Shu, Weighted Essentially Non-Oscillatory Schemes on Triangular Meshes, NASA/CR-1998-208459. ICASE Report No 98-32 | MR
[3] M. Dumbser, M. Kaser, V. A. Titarev, E. F. Toro, “Quadrature-free non-oscillatory finite volume schemes on unstructured meshes for nonlinear hyperbolic systems”, Journal of Computational Physics, 221:2 (2007), 693–723 | DOI | MR | Zbl
[4] P. Tsoutsanis, V. A. Titarev, D. Drikakis, “WENO schemes on arbitrary mixed-element unstructured meshes in three space dimensions”, Journal of Computational Physics, 230 (2011), 1585–1601 | DOI | MR | Zbl
[5] V. A. Titarev, “Implicit numerical method for computing three-dimensional rarefied gas flows on unstructured meshes”, Comp. Math. and Mathematical Physics, 50:10 (2010), 1719–1733 | DOI | MR | Zbl
[6] B. Cockburn, C.-W. Shu, “Runge–Kutta Discontinuous Galerkin Methods for Convection-Dominated Problems”, Journal of scientific computing, 16:3 (2001), 173–261 | DOI | MR | Zbl
[7] H. L. Atkins, C.-W. Shu, “Quadrature-Free Implementation of Discontinuous Galerkin Method for Hyperbolic Equations”, AIAA journal, 36:5 (1998) | DOI
[8] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Limiter povyshennogo poryadka tochnosti dlya razryvnogo metoda Galerkina na treugolnih setkah”, Keldysh Institute preprints, 2013, 053, 26 pp.
[9] J.X. Qiu, C.-W. Shu, “A comparison of troubled-cell indicators for Runge-Kutta discontinuous Galerkin methods using weighted essentially nonoscillatory limiters”, SIAM Journal of scientific computing, 27 (2005), 995–1013 | DOI | MR | Zbl
[10] I. V. Abalakin, T. K. Kozubskaya, “Skhema povyshennoi tochnosti na osnove reberno-orientirovannoi kvaziodnomernoi rekonstruktsii peremennih dlia resheniia zadach aerodinamiki i aeroakustiki na tetraedralnih setkax”, Matematicheskoe modelirovanie, 25:8 (2013), 109–136 | MR
[11] B. Koobus, F. Alauzet, A. Dervieux, “Numerical algorithms for unstructured meshes”, Computational Fluid Dynamics, ed. F. Magoules, CRC Press, 2011, 131–203 | DOI | Zbl
[12] P. A. Bakhvalov, “Quasi one-dimensional reconstruction scheme on convex polygonal meshes for solving aeroacoustics problems”, Mathematical Models and Computer Simulations, 6:2 (2014), 192–202 | DOI | MR
[13] P. A. Bakhvalov, T. K. Kozubskaya, “Ekonomichnaya formulirovka shem s kvazindnomernoi rekonstruktsiei peremennih”, Keldysh Institute preprints, 2013, 089, 16 pp. | Zbl
[14] N. Gourvitch, G. Roge, I. Abalakin, A. Dervieux, T. Kozubskaya, A tetrahedral-based superconvergent scheme for aeroacoustics, INRIA Report 5212, 2004
[15] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservations laws, ICASE report No 97-65, 1997 | MR
[16] C. Le Touse, A. Murrone, H. Guillard, “Multislope MUSCL method for general unstructured meshes”, Journal of Computational Physics, 284 (2015), 389–418 | DOI | MR
[17] A. Danilov, Y. Vassilevski, “A monotone nonlinear finite volume method for diffusion equations on conformal polyhedral meshes”, Russ. J. Numer. Anal. Math. Modelling, 24:3 (2009), 207–227 | DOI | MR | Zbl