Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_3_a3, author = {E. N. Aristova and M. I. Stoynov}, title = {Bicompact schemes of solving an stationary transport equation by quasi{\textendash}diffusion method}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {51--63}, publisher = {mathdoc}, volume = {28}, number = {3}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a3/} }
TY - JOUR AU - E. N. Aristova AU - M. I. Stoynov TI - Bicompact schemes of solving an stationary transport equation by quasi–diffusion method JO - Matematičeskoe modelirovanie PY - 2016 SP - 51 EP - 63 VL - 28 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a3/ LA - ru ID - MM_2016_28_3_a3 ER -
E. N. Aristova; M. I. Stoynov. Bicompact schemes of solving an stationary transport equation by quasi–diffusion method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 51-63. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a3/
[1] B. V. Rogov, M. N. Mikhailovskaya, “Fourth Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150 | DOI | MR | Zbl
[2] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic bicompact schemes for linear transport equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl
[3] B. V. Rogov, M. N. Mikhailovskaya, “Monotone high-accuracy compact running scheme for quasi-linear hyperbolic equations”, Mathematical Models and Computer Simulations, 4:4 (2012), 375–384 | DOI | MR | Zbl
[4] M. N. Mikhailovskaya, B. V. Rogov, “The bicompact monotonic schemes for a multidimensional linear transport equation”, Math. Models and Comput. Simul., 4:3 (2012), 355–362 | DOI | MR | MR | Zbl
[5] E. N. Aristova, B. V. Rogov, “Boundary conditions implementation in bicompact schemes for the linear transport equation”, Mathematical Models and Computer Simulations, 5:3 (2013), 199–208 | DOI | MR
[6] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Mathematics and Mathematical Physics, 52:4 (2012), 578–600 | DOI | MR | Zbl
[7] B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Computational Mathematics and Mathematical Physics, 53:2 (2013), 205–214 | DOI | MR | Zbl
[8] E. N. Aristova, D. F. Baydin, B. V. Rogov, “Bicompact Schemes for an Inhomogeneous Linear Transport Equation”, Math. Models and Computer Simulations, 5:6 (2013), 586–594 | DOI | MR
[9] E. N. Aristova, “Bicompact Schemes for an Inhomogeneous Linear Transport Equation in the Case of a Large Optical Depth”, Mathematical Models and Computer Simulations, 6:3 (2014), 227–238 | DOI | MR
[10] V. Ya. Gol'din, “A quasi-diffusion method of solving the kinetic equation”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 136–149 | DOI | MR
[11] V. Ya. Gol'din, “O matematicheskom modelirovanii zadach sploshnoj sredy s neravnovesnym perenosom”, Sovremennye problemy matematicheskoj fiziki i vychislitelnoj matematiki, Nauka, M., 1982, 113–127
[12] M. L. Adams, E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI
[13] E. N. Aristova, V. Ya. Gol'din, “Raschet uravneniya perenosa nejtronov sovmestno s uravneniyami kvazidiffuzii v $r-z$ geometrii”, Matematicheskoe modelirovanie, 18:11 (2006), 61–66 | MR | Zbl
[14] T. G. Elizarova, B. N. Chetveryushkin, “Kinetically coordinated difference schemes for modelling flows of a viscous heat-conducting gas”, USSR Computational Mathematics and Mathematical Physics, 28:6 (1988), 64–75 | DOI | MR | Zbl
[15] B. N. Chetverushkin, Kineticheski-soglasovannye sxemy v gazovoj dinamike: novaya model vyazkogo gaza, algoritmy, parallelnaya realizaciya, prilozheniya, Izd-vo MGU, M., 1999, 232 pp.
[16] L. V. Dorodnicyn, B. N. Chetverushkin, “Kineticheski soglasovannye sxemy dlya modelirovaniya techeniya vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1875–1889 | MR | Zbl
[17] I. V. Abalakin, A. V. Zhoxova, B. N. Chetverushkin, “Kineticheski-soglasovannye schemy povyshennogo poryadka tochnosti”, Matem. modelirovanie, 13:5 (2001), 53–61 | MR | Zbl
[18] W. H. Reed, “New Difference Schemes for the Neutron Transport Equation”, Nucl. Sci. Eng., 46 (1971), 309–315 | DOI
[19] V. E. Troshhiev, Yu. V. Troshhiev, “Monotonnye raznostnye sxemy s vesom dlya uravneniya perenosa v ploskom sloe”, Matem. modelirovanie, 15:1 (2003), 3–13
[20] A. A. Samarskii, E. S. Nikolaev, Numerical Methods for Grid Equations, Springer, 1989, 744 pp.