Bicompact schemes of solving an stationary transport equation by quasi–diffusion method
Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 51-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

High order approximation schemes (up to fourth order) for numerical calculation of neutron transport equation coupled with a quasi–diffusion system of equations (so called a low order system of transport equations), which is used for acceleration of iterations on scattering term, are constructed. These schemes are developed on the basis of the uniform principles of compact approximation (in the frame of single cell of a space mesh). That makes it possible to take into account contact discontinuities correctly. The fourth order approximation on minimal two point stencil is achieved by widening unknowns list. As additional unknowns are considered either the integral averaged values over the cell or a semi integer values. These values are connected by the Simpson integration formula. An equation for determination of additional unknowns in a cell is constructed by implementation of Euler–Maclaurin formula. The calculation of a set of test problem has been carried out. The very good practical accuracy of suggested schemes has been revealed. These schemes might be extended naturally on 2D and 3D geometries. The high accuracy, monotonicity, high efficiency, compact stencil of the schemes make theme very attractive for engineering calculations such as numerical simulation of nuclear reactors and others.
Keywords: linear transport equation, bicompact difference schemes
Mots-clés : quasi–diffusion equations.
@article{MM_2016_28_3_a3,
     author = {E. N. Aristova and M. I. Stoynov},
     title = {Bicompact schemes of solving an stationary transport equation by quasi{\textendash}diffusion method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {51--63},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a3/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - M. I. Stoynov
TI  - Bicompact schemes of solving an stationary transport equation by quasi–diffusion method
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 51
EP  - 63
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a3/
LA  - ru
ID  - MM_2016_28_3_a3
ER  - 
%0 Journal Article
%A E. N. Aristova
%A M. I. Stoynov
%T Bicompact schemes of solving an stationary transport equation by quasi–diffusion method
%J Matematičeskoe modelirovanie
%D 2016
%P 51-63
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_3_a3/
%G ru
%F MM_2016_28_3_a3
E. N. Aristova; M. I. Stoynov. Bicompact schemes of solving an stationary transport equation by quasi–diffusion method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 51-63. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a3/

[1] B. V. Rogov, M. N. Mikhailovskaya, “Fourth Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150 | DOI | MR | Zbl

[2] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic bicompact schemes for linear transport equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl

[3] B. V. Rogov, M. N. Mikhailovskaya, “Monotone high-accuracy compact running scheme for quasi-linear hyperbolic equations”, Mathematical Models and Computer Simulations, 4:4 (2012), 375–384 | DOI | MR | Zbl

[4] M. N. Mikhailovskaya, B. V. Rogov, “The bicompact monotonic schemes for a multidimensional linear transport equation”, Math. Models and Comput. Simul., 4:3 (2012), 355–362 | DOI | MR | MR | Zbl

[5] E. N. Aristova, B. V. Rogov, “Boundary conditions implementation in bicompact schemes for the linear transport equation”, Mathematical Models and Computer Simulations, 5:3 (2013), 199–208 | DOI | MR

[6] M. N. Mikhailovskaya, B. V. Rogov, “Monotone compact running schemes for systems of hyperbolic equations”, Comput. Mathematics and Mathematical Physics, 52:4 (2012), 578–600 | DOI | MR | Zbl

[7] B. V. Rogov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Computational Mathematics and Mathematical Physics, 53:2 (2013), 205–214 | DOI | MR | Zbl

[8] E. N. Aristova, D. F. Baydin, B. V. Rogov, “Bicompact Schemes for an Inhomogeneous Linear Transport Equation”, Math. Models and Computer Simulations, 5:6 (2013), 586–594 | DOI | MR

[9] E. N. Aristova, “Bicompact Schemes for an Inhomogeneous Linear Transport Equation in the Case of a Large Optical Depth”, Mathematical Models and Computer Simulations, 6:3 (2014), 227–238 | DOI | MR

[10] V. Ya. Gol'din, “A quasi-diffusion method of solving the kinetic equation”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 136–149 | DOI | MR

[11] V. Ya. Gol'din, “O matematicheskom modelirovanii zadach sploshnoj sredy s neravnovesnym perenosom”, Sovremennye problemy matematicheskoj fiziki i vychislitelnoj matematiki, Nauka, M., 1982, 113–127

[12] M. L. Adams, E. W. Larsen, “Fast iterative methods for discrete-ordinates particle transport calculations”, Progress in Nuclear Energy, 40:1 (2002), 3–159 | DOI

[13] E. N. Aristova, V. Ya. Gol'din, “Raschet uravneniya perenosa nejtronov sovmestno s uravneniyami kvazidiffuzii v $r-z$ geometrii”, Matematicheskoe modelirovanie, 18:11 (2006), 61–66 | MR | Zbl

[14] T. G. Elizarova, B. N. Chetveryushkin, “Kinetically coordinated difference schemes for modelling flows of a viscous heat-conducting gas”, USSR Computational Mathematics and Mathematical Physics, 28:6 (1988), 64–75 | DOI | MR | Zbl

[15] B. N. Chetverushkin, Kineticheski-soglasovannye sxemy v gazovoj dinamike: novaya model vyazkogo gaza, algoritmy, parallelnaya realizaciya, prilozheniya, Izd-vo MGU, M., 1999, 232 pp.

[16] L. V. Dorodnicyn, B. N. Chetverushkin, “Kineticheski soglasovannye sxemy dlya modelirovaniya techeniya vyazkogo gaza”, Zh. vychisl. matem. i matem. fiz., 40:12 (2000), 1875–1889 | MR | Zbl

[17] I. V. Abalakin, A. V. Zhoxova, B. N. Chetverushkin, “Kineticheski-soglasovannye schemy povyshennogo poryadka tochnosti”, Matem. modelirovanie, 13:5 (2001), 53–61 | MR | Zbl

[18] W. H. Reed, “New Difference Schemes for the Neutron Transport Equation”, Nucl. Sci. Eng., 46 (1971), 309–315 | DOI

[19] V. E. Troshhiev, Yu. V. Troshhiev, “Monotonnye raznostnye sxemy s vesom dlya uravneniya perenosa v ploskom sloe”, Matem. modelirovanie, 15:1 (2003), 3–13

[20] A. A. Samarskii, E. S. Nikolaev, Numerical Methods for Grid Equations, Springer, 1989, 744 pp.