Prescision approximations for Fermi--Dirak functions of integer index
Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 23-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

Fermi–Dirak functions of integer index are widely used in problems of electronic transport in dense substances. Polynomial approximations are constructed for its quick computation. A simple algorithm is built for finding the coefficients of these approximations based on interpolation with a special linear-trigonometric grid nodes. Represented that this grid provides results close to optimal. Such coefficients are founded for functions of index $1$, $2$, $3$, which provide ratio error $2\cdot10^{-16}$ with $9$ free parametrs.
Mots-clés : Fermi–Dirak functions
Keywords: precision approximations, rational approximation, linear-trigonometric grid.
@article{MM_2016_28_3_a1,
     author = {N. N. Kalitkin and S. A. Kolganov},
     title = {Prescision approximations for {Fermi--Dirak} functions of integer index},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {23--32},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a1/}
}
TY  - JOUR
AU  - N. N. Kalitkin
AU  - S. A. Kolganov
TI  - Prescision approximations for Fermi--Dirak functions of integer index
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 23
EP  - 32
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a1/
LA  - ru
ID  - MM_2016_28_3_a1
ER  - 
%0 Journal Article
%A N. N. Kalitkin
%A S. A. Kolganov
%T Prescision approximations for Fermi--Dirak functions of integer index
%J Matematičeskoe modelirovanie
%D 2016
%P 23-32
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_3_a1/
%G ru
%F MM_2016_28_3_a1
N. N. Kalitkin; S. A. Kolganov. Prescision approximations for Fermi--Dirak functions of integer index. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 23-32. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a1/

[1] E. C. Stoner, J. McDougall, “The computation of Fermi–Dirac functions”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 237(773) (1938), 67–104 | DOI

[2] H. C. Thacher Jr., W. J. Cody, “Rational Chebyshev approximations for Fermi–Dirac integrals of orders -1/2, 1/2 and 3/2”, Mathematics of Computation, 1967, 30–40 | Zbl

[3] M. Lundstrom, R. Kim, Notes on Fermi-Dirac integrals, 2008, arXiv: 0811.0116

[4] N. N. Kalitkin, “About computation of functions the Fermi–Dirak”, Magazine of computational mathematics and mathematical physics, 8:1 (1968), 173–175 | MR

[5] L. D. Cloutman, “Numerical evaluation of the Fermi–Dirac integrals”, The Astrophysical Journal Supplement Series, 71 (1989), 677–699 | DOI

[6] M. Goano, “Algorithm 745: computation of the complete and incomplete Fermi–Dirac integral”, ACM Transactions on Mathematical Software (TOMS), 21:3 (1995), 221–232 | DOI | Zbl

[7] A. J. MacLeod, “Algorithm 779: Fermi-Dirac functions of order-1/2, 1/2, 3/2, 5/2”, ACM Transactions on Mathematical Software (TOMS), 24:1 (1998), 1–12 | DOI | MR | Zbl

[8] N. N. Kalitkin, Chislennye metody, M., 1978

[9] N. N. Kalitkin, E. A. Alshina, Chislennye metody, v. 1, Chislennyi analis, Akademiia, M., 2013

[10] N. N. Kalitkin, A. A. Belov, “Analogue of the Richardson method marching”, Doklady Mathematics, 88:2 (2013), 596–600 | DOI | MR | Zbl