Equilibrium prices in an economic equilibrium model
Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 3-22

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we study the existence of equilibrium price vector in a concurrent equilibrium model taking into account the transaction costs associated with the sale of products. In this model, the demand function is obtained as the solution to the problem of maximizing the utility function under budget constraints, and the supply function is obtained as the solution to the problem of profit maximization given transaction losses on the technology set. We establish sufficient conditions for the existence of quilibrium price vector. These conditions are consequences of general theorems on the existence of coincidence points in the theory of $\alpha$-covering mappings.
Keywords: economic equilibrium, transaction costs, coincidence points.
@article{MM_2016_28_3_a0,
     author = {A. V. Arutyunov and N. G. Pavlova and A. A. Shananin},
     title = {Equilibrium prices in an economic equilibrium model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--22},
     publisher = {mathdoc},
     volume = {28},
     number = {3},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_3_a0/}
}
TY  - JOUR
AU  - A. V. Arutyunov
AU  - N. G. Pavlova
AU  - A. A. Shananin
TI  - Equilibrium prices in an economic equilibrium model
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 22
VL  - 28
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_3_a0/
LA  - ru
ID  - MM_2016_28_3_a0
ER  - 
%0 Journal Article
%A A. V. Arutyunov
%A N. G. Pavlova
%A A. A. Shananin
%T Equilibrium prices in an economic equilibrium model
%J Matematičeskoe modelirovanie
%D 2016
%P 3-22
%V 28
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_3_a0/
%G ru
%F MM_2016_28_3_a0
A. V. Arutyunov; N. G. Pavlova; A. A. Shananin. Equilibrium prices in an economic equilibrium model. Matematičeskoe modelirovanie, Tome 28 (2016) no. 3, pp. 3-22. http://geodesic.mathdoc.fr/item/MM_2016_28_3_a0/