Numerical modeling of composite materials failure using grid-characteristic method
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 97-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper presents an overview of existing failure criteria for composite materials and results of the application of some of them for modeling a low energy strike at a composite material for the three-dimensional problem statement. Simulation is performed by means of grid-characteristic method. The choice of certain criteria is substantiated and the comparison them with each other is presented.
Keywords: mathematical modeling, parallel algorithms, grid-characteristic method, composite materials, composites failure.
@article{MM_2016_28_2_a8,
     author = {K. A. Beklemysheva and A. V. Vasyukov and A. S. Ermakov and I. B. Petrov},
     title = {Numerical modeling of composite materials failure using grid-characteristic method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--110},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a8/}
}
TY  - JOUR
AU  - K. A. Beklemysheva
AU  - A. V. Vasyukov
AU  - A. S. Ermakov
AU  - I. B. Petrov
TI  - Numerical modeling of composite materials failure using grid-characteristic method
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 97
EP  - 110
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a8/
LA  - ru
ID  - MM_2016_28_2_a8
ER  - 
%0 Journal Article
%A K. A. Beklemysheva
%A A. V. Vasyukov
%A A. S. Ermakov
%A I. B. Petrov
%T Numerical modeling of composite materials failure using grid-characteristic method
%J Matematičeskoe modelirovanie
%D 2016
%P 97-110
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a8/
%G ru
%F MM_2016_28_2_a8
K. A. Beklemysheva; A. V. Vasyukov; A. S. Ermakov; I. B. Petrov. Numerical modeling of composite materials failure using grid-characteristic method. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 97-110. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a8/

[1] M. J. Hinton, A. S. Kaddour, P. D. Soden, Failure criteria in fibre reinforced polymer composites: the world-wide failure exercise, Elsevier, Amersterdam–London, 2004

[2] M. J. Hinton, A. S. Kaddour, “Maturity of 3D failure criteria for fibre-reinforced composites: Comparison between theories and experiments: Part B of WWFE-II”, Journal of Composite Materials, 2013, no. 7, 925–966

[3] W. Nowacki, Teoriia uprugisti, Mir, M., 1975 | MR

[4] L. I. Sedov, Mechanics of Continuous Media, v. 1, World Scientific Pub Co Inc, Singapore, 1996

[5] R. P. Fedorenko, Vvedenie v vychislitelnuiu fiziku, Izd-vo MFTI, M., 1994

[6] F. B. Chelnokov, “Iavnoe predstavlenie setochno-kharakteristicheskikh skhem dlia uravenii uprugosti v dvumernom i trekhmernom prostranstvakh”, Matematicheskoe modelirovanie, 18:6 (2006), 96–108 | MR | Zbl

[7] K. M. Magomedov, A. S. Kholodov, Setochno-kharakteristicheskie chislennye metody, Nauka, M., 1988 | MR

[8] I. B. Petrov, A. V. Favorskaya, “Biblioteka po interpoliatsii vysokikh poriadkov na nestrukturirovannykh treugolnykh i tetraedralnykh setkah”, Informastionnye tekhnologii, 2011, no. 9, 30–32

[9] P. I. Agapov, O. M. Belotserkovskii, I. B. Petrov, “Numerical simulation of the consequences of a mechanical action on a human brain under a skull injury”, Computational Mathematics and Mathematical Physics, 46:9 (2006), 1629–1638 | DOI | MR

[10] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Nauka, M., 1984 | MR

[11] K. A. Beklemysheva, I. B. Petrov, A. V. Favorskaya, “Numerical simulation of processes in solid deformable media in the presence of dynamic contacts using the grid-characteristic method”, Mathematical Models and Computer Simulations, 6:3 (2014), 294–304 | DOI

[12] A. A. Ilyushin, Plastichnost, Gostekhizdat, M., 1948

[13] R. Hill, “A theory of the yielding and plastic flow of anisotropic metals”, Proceedings of the Royal Society of London, Series A, Mathematical and Physical Sciences, 193:1033 (1948), 281–297 | DOI | MR | Zbl

[14] S. W. Tsai, E. M. Wu, “A general theory of strength for anisotropic materials”, Journal of Composite Materials, 5 (1971), 58–80 | DOI

[15] R. Hill, “Theoretical plasticity of textured aggregates”, Mathematical Proceedings of the Cambridge Philosophical Society, 85 (1979), 179–191 | DOI | MR | Zbl

[16] S. Abrate, “Criteria for yielding or failure of cellular materials”, Journal of Sandwich Structures and Materials, 10 (2008), 5–51 | DOI

[17] F. Barlat, O. Cazacu, “Generalization of Drucker's yield criterion to orthotropy”, Mathematics and Mechanics of Solids, 6:6 (2001), 613–630 | DOI | Zbl

[18] Y. Huang, C. Liu, M. G. Stout, “On the asymmetric yield surface of plastically orthotropic materials: A phenomenological study”, Acta Materialia, 45:6 (1997), 2397–2406 | DOI

[19] Z. Hashin, A. Rotem, “A fatigue failure criterion for fiber reinforced materials”, Journal of Composite Materials, 7:5 (1973), 448–464 | DOI

[20] R. C. Batra, G. Gopinath, J. Q. Zheng, “Damage and failure in low energy impact of fiber-reinforced polymeric composite laminates”, Composite Structures, 94:2 (2012), 540–547 | DOI | MR

[21] A. Puck, W. Schneider, “On failure mechanisms and failure criteria of filament-wound glass-fibre/resin composites”, Plastics and Polymers, 37 (1969), 33–42

[22] A. Puck, H. Schurmann, “Failure analysis of FRP laminates by means of physically based phenomenological models”, Composites Science and Technology, 62 (2002), 1633–1662 | DOI

[23] A. Elmarakbi, H. Fukunaga, N. Hu, H. Wang, Y. Zemba, “Stable Numerical Simulations of Propagations of Complex Damages in Composite Structures Under Transverse Loads”, Composites Science and Technology, 67:3–4 (2007), 752–765