Micro-macro Fokker--Planck--Kolmogorov models for a gas of rigid spheres
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 65-85

Voir la notice de l'article provenant de la source Math-Net.Ru

Macroscopic system of gas dynamic equations, differing from Navier–Stokes and quasi gas dynamic ones, is derived from a stochastic microscopic model of a hard sphere gas in a phase space. The model is diffusive in velocity space and valid for moderate Knudsen numbers. The main pecularity of our derivation is more accurate velocity averaging due to analitical solving stochastic differential equations with respect to Wiener mesure which describe our original meso model. It is shown at an example of a shock wave front structure that our approach leads to larger than Navier–Stokes front widening that corresponds to reality. The numerical solution is performed by a well suited to super computer applications special «discontinious» particle method.
Keywords: Boltzmann equation, Navier–Stokes equation; random processes, stochastic differential equations with respect to Poisson and Wiener measures, particle method.
Mots-clés : Kolmogorov–Fokker–Planck equation
@article{MM_2016_28_2_a6,
     author = {S. V. Bogomolov and N. B. Esikova and A. E. Kuvshinnikov},
     title = {Micro-macro {Fokker--Planck--Kolmogorov} models for a gas of rigid spheres},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--85},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a6/}
}
TY  - JOUR
AU  - S. V. Bogomolov
AU  - N. B. Esikova
AU  - A. E. Kuvshinnikov
TI  - Micro-macro Fokker--Planck--Kolmogorov models for a gas of rigid spheres
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 65
EP  - 85
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a6/
LA  - ru
ID  - MM_2016_28_2_a6
ER  - 
%0 Journal Article
%A S. V. Bogomolov
%A N. B. Esikova
%A A. E. Kuvshinnikov
%T Micro-macro Fokker--Planck--Kolmogorov models for a gas of rigid spheres
%J Matematičeskoe modelirovanie
%D 2016
%P 65-85
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a6/
%G ru
%F MM_2016_28_2_a6
S. V. Bogomolov; N. B. Esikova; A. E. Kuvshinnikov. Micro-macro Fokker--Planck--Kolmogorov models for a gas of rigid spheres. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 65-85. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a6/