Study of different modes of fatigue fracture and durability estimation for compressor disc of gas turbine engine
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 53-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Different criteria of the multiaxial fatigue fracture are studied for low-cycle fatigue (LCF) and their generalizations are proposed for very-high-cycle fatigue regime (VHCF). The procedure of the stress state calculation is described for the compressor disk of the gas turbine engine (GTE) in the flight cycle of loading and for the low-amplitude vibrations of the blades. The durability estimations of the disc operation are obtained for alternative mechanisms of fatigue LCF and VHCF using the calculated stress state and the models of multiaxial fatigue fracture. The results are compared with observed data during operation.
Keywords: low-cycle fatigue, very-high-cycle fatigue, durability estimation, centrifugal loading, high-frequency vibrations.
Mots-clés : stress concentration
@article{MM_2016_28_2_a5,
     author = {N. G. Burago and A. B. Zhuravlev and I. S. Nikitin and V. L. Yakushev},
     title = {Study of different modes of fatigue fracture and durability estimation for compressor disc of gas turbine engine},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {53--64},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a5/}
}
TY  - JOUR
AU  - N. G. Burago
AU  - A. B. Zhuravlev
AU  - I. S. Nikitin
AU  - V. L. Yakushev
TI  - Study of different modes of fatigue fracture and durability estimation for compressor disc of gas turbine engine
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 53
EP  - 64
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a5/
LA  - ru
ID  - MM_2016_28_2_a5
ER  - 
%0 Journal Article
%A N. G. Burago
%A A. B. Zhuravlev
%A I. S. Nikitin
%A V. L. Yakushev
%T Study of different modes of fatigue fracture and durability estimation for compressor disc of gas turbine engine
%J Matematičeskoe modelirovanie
%D 2016
%P 53-64
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a5/
%G ru
%F MM_2016_28_2_a5
N. G. Burago; A. B. Zhuravlev; I. S. Nikitin; V. L. Yakushev. Study of different modes of fatigue fracture and durability estimation for compressor disc of gas turbine engine. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 53-64. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a5/

[1] A. A. Shaniavskii, Modelirovanie ustalostnykh razrushenii metallov, Izd-vo nauchno-tekhnicheskoi literatury «Monografiia», Ufa, 2007, 498 pp.

[2] N. G. Burago, A. B. Zhuravlev, I. S. Nikitin, “Models of Multiaxial Fatigue Fracture and Service Life Estimation of Structural Elements”, Mechanics of Solids, 46:6 (2011), 828–838 | DOI

[3] M. A. Meggiolaro, A. C. Miranda, J. de Castro, “Comparison among fatigue life prediction methods and stress-strain models under multiaxial loading”, Proceedings of 19th Int. Congress of Mech. Eng. (2007, Brasilia, DF)

[4] D. F. Socie, G. B. Marquis, Multiaxial fatigue, Society of Automotive Engineers, 2000, 129–169

[5] N. Shamsaei, M. Gladskyi, K. Panasovskyi, S. Shukaev, A. Fatemi, “Multiaxial fatigue of titanium including step loading and path alternation and sequence affects”, Int. J. of fatigue, 32 (2010), 1862–1874 | DOI

[6] J. Lemaitre, J. L. Chaboche, Mechanics of solid materials, Cambridge University Press, 1994, 582 pp.

[7] J. L. Chaboche, P. M. Lesne, “Non-linear continuous fatigue damage model”, Fatigue and Fracture of Eng. Materials and Structures, 11:1 (1988), 1–17 | DOI

[8] A. K. Marmi, A. M. Habraken, L. Duchene, “Multiaxial fatigue damage modeling at macro scale of Ti6Al4V alloy”, Int. J. of Fatigue, 31 (2009), 2031–2040 | DOI

[9] I. V. Papadopoulos, P. Davoli, C. Goria, M. Filippini, A. Bernasconi, “A comparative study of multiaxial high-cycle fatigue criteria for metals”, Int. J. of Fatigue, 19:3 (1997), 219–235 | DOI

[10] Ying-Yu Wang, Wei-Xing Yao, “Evaluation and comparison of several multiaxial fatigue criteria”, Int. J. of Fatigue, 26 (2004), 17–25 | DOI

[11] G. Sines, “Behavior of metals under complex static and alternating stresses”, Metal fatigue, McGraw-Hill, 1959, 145–169

[12] B. Crossland, “Effect of large hydrostatic pressures on torsional fatigue strength of an alloy steel”, Proc. Int. Conf. on Fatigue of Metals (London, 1956), 138–149

[13] W. N. Findley, “A theory for the effect of mean stress on fatigue of metals under combined torsion and axial load or bending”, J. of Eng. for Industry, 1959, 301–306

[14] C. Bathias, P. C. Paris, Gigacycle fatigue in mechanical practice, Marcel Dekker, New York, 2005, 304 pp.

[15] N. G. Burago, A. B. Zhuravlev, I. S. Nikitin, “Analiz napriazhennogo sostoianiia kontaktnoi sistemy «disk–lopatka» gazoturbinnogo dvigatelia”, Vychisl. mekh. splosh. sred, 4:2 (2011), 5–16

[16] V. Bonnand, J. L. Chaboche, H. Cherouali, P. Kanoute, E. Ostoja-Kuczynski, F. Vogel, “Investigation of multiaxial fatigue in the prospect of turbine disc applications. Part II: Fatigue criteria analysis and formulation of a new combined one”, Proceedings the 9-th Intern. Conf. of Multiaxial Fatigue and Fracture, ICMFF9 (Parma, Italy, 2010), 691–698

[17] N. G. Burago, A. B. Zhuravlev, I. S. Nikitin, “Sverkhmnogotsiklovoe ustalostnoe razrushenie titanovykh diskov kompressora”, Vestnik PNIPU. Mekhanika, 2013, no. 1, 52–67

[18] A. M. Mkhitarian, Aerodinamika, Mashinostroenie, M., 1976, 447 pp.

[19] N. E. Kochin, I. A. Kibel, N. V. Roze, Teoreticheskaia gidromekhanika, v. 1, Fizmatgiz, M., 1963, 584 pp.