Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_2_a11, author = {A. I. Lopato and P. S. Utkin}, title = {Two approaches to the mathematical modeling of detonation wave}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {133--145}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a11/} }
A. I. Lopato; P. S. Utkin. Two approaches to the mathematical modeling of detonation wave. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 133-145. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a11/
[1] L. P. Orlenko (red.), Fizika vzryva, v. 1, izd. 3-e, ispr., Fizmatlit, M., 2004, 832 pp.
[2] A. A. Vasil'ev, “Cellular structures of a multifront detonation wave and initiation (Review)”, Combustion, Explosion and Shock Waves, 51:1 (2015), 1–20 | DOI | Zbl
[3] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, S. F. Osinkin, “Nonlinear wave processes that occur during the initiation and propagation of gaseous detonation”, Proc. Steklov Inst. Math., 251, 2005, 192–205 | MR | Zbl
[4] J. H. S. Lee, The Detonation Phenomenon, Cambridge University Press, 2008, 388 pp.
[5] V. P. Korobeinikov, V. A. Levin, V. V. Markov, G. G. Chernyi, “Propagation of blast waves in a combustible gas”, Astronautica Acta, 17 (1972), 529–537
[6] V. Ia. Basevich, S. M. Frolov, “Globalnye kineticheskie mekhanizmy, ispolzuiushchiesia pri modelirovanii mnogostadiinogo samovosplameneniia uglevodorodov v reagiruiushchikh techeniiakh”, Khimicheskaia fizika, 25:6 (2006), 54–62
[7] H. I. Lee, D. S. Stewart, “Calculation of linear detonation instability: one-dimensional instability of plane detonation”, Journal of Fluid Mechanics, 216 (1990), 103–132 | DOI | Zbl
[8] L. He, J. H. S. Lee, “The dynamical limit of one-dimensional detonations”, Physics of Fluids, 7 (1995), 1151–1158 | DOI | Zbl
[9] A. R. Kasimov, D. S. Stewart, “On the dynamics of the self-sustained one-dimensional detonations: A numerical study in the shock-attached frame”, Physics of Fluids, 16:10 (2004), 3566–3578 | DOI
[10] A. K. Henrick, T. D. Aslam, J. M. Powers, “Simulations of pulsating one-dimensional detonations with true fifth order accuracy”, Journal of Computational Physics, 213 (2006), 311–329 | DOI | MR | Zbl
[11] J. J. Erpenbeck, “Stability of steady-state equilibrium detonations”, Physics of Fluids, 5 (1962), 604–614 | DOI | MR
[12] L. K. Cole, A. R. Karagozian, J.-L. Cambier, “Stability of flame-shock coupling in detonation waves: 1D dynamics”, Combustion Science and Technology, 184:10–11 (2012), 1502–1525 | DOI
[13] A. S. Kholodov, “Chislennye metody resheniia uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediia nizkotemperaturnoi plazmy, v. 2, 2008, 220–235
[14] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No 97-65, 1997 | MR
[15] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77 (1988), 439–471 | DOI | MR | Zbl
[16] A. I. Lopato, P. S. Utkin, “Matematicheskoe modelirovanie pulsiruiushchei volny detonatsii s ispolzovaniem ENO-skhem razlichhykh poriadkov approksimatsii”, Kompiuternye issledovaniia i modelirovanie, 6:5 (2014), 643–653
[17] A. A. Vasilev, V. V. Mitrofanov, M. E. Topchiian, “Detonatsionnye volny v gazakh”, Fizika goreniia i vzryva, 1987, no. 5, 109–131