Two approaches to the mathematical modeling of detonation wave
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 133-145.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is dedicated to the numerical investigation of different modes of gaseous pulsating detonation wave propagation using two approaches. In the first one the problem is solved in the laboratory frame and the detonation is initiated near the closed end of the channel. In the second approach the modeling is carried out in the shock-attached frame. For this purpose the second approximation order algorithm for the integration of shock evolution equation using gridcharacteristic method is proposed. The stable, weakly unstable and irregular modes of detonation wave propagation are investigation using both approaches. The qualitative and quantitative differences between two approaches are marked out.
Keywords: numerical modeling, detonation wave, grid-characteristic method, shock-attached frame.
@article{MM_2016_28_2_a11,
     author = {A. I. Lopato and P. S. Utkin},
     title = {Two approaches to the mathematical modeling of detonation wave},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {133--145},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a11/}
}
TY  - JOUR
AU  - A. I. Lopato
AU  - P. S. Utkin
TI  - Two approaches to the mathematical modeling of detonation wave
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 133
EP  - 145
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a11/
LA  - ru
ID  - MM_2016_28_2_a11
ER  - 
%0 Journal Article
%A A. I. Lopato
%A P. S. Utkin
%T Two approaches to the mathematical modeling of detonation wave
%J Matematičeskoe modelirovanie
%D 2016
%P 133-145
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a11/
%G ru
%F MM_2016_28_2_a11
A. I. Lopato; P. S. Utkin. Two approaches to the mathematical modeling of detonation wave. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 133-145. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a11/

[1] L. P. Orlenko (red.), Fizika vzryva, v. 1, izd. 3-e, ispr., Fizmatlit, M., 2004, 832 pp.

[2] A. A. Vasil'ev, “Cellular structures of a multifront detonation wave and initiation (Review)”, Combustion, Explosion and Shock Waves, 51:1 (2015), 1–20 | DOI | Zbl

[3] V. A. Levin, V. V. Markov, T. A. Zhuravskaya, S. F. Osinkin, “Nonlinear wave processes that occur during the initiation and propagation of gaseous detonation”, Proc. Steklov Inst. Math., 251, 2005, 192–205 | MR | Zbl

[4] J. H. S. Lee, The Detonation Phenomenon, Cambridge University Press, 2008, 388 pp.

[5] V. P. Korobeinikov, V. A. Levin, V. V. Markov, G. G. Chernyi, “Propagation of blast waves in a combustible gas”, Astronautica Acta, 17 (1972), 529–537

[6] V. Ia. Basevich, S. M. Frolov, “Globalnye kineticheskie mekhanizmy, ispolzuiushchiesia pri modelirovanii mnogostadiinogo samovosplameneniia uglevodorodov v reagiruiushchikh techeniiakh”, Khimicheskaia fizika, 25:6 (2006), 54–62

[7] H. I. Lee, D. S. Stewart, “Calculation of linear detonation instability: one-dimensional instability of plane detonation”, Journal of Fluid Mechanics, 216 (1990), 103–132 | DOI | Zbl

[8] L. He, J. H. S. Lee, “The dynamical limit of one-dimensional detonations”, Physics of Fluids, 7 (1995), 1151–1158 | DOI | Zbl

[9] A. R. Kasimov, D. S. Stewart, “On the dynamics of the self-sustained one-dimensional detonations: A numerical study in the shock-attached frame”, Physics of Fluids, 16:10 (2004), 3566–3578 | DOI

[10] A. K. Henrick, T. D. Aslam, J. M. Powers, “Simulations of pulsating one-dimensional detonations with true fifth order accuracy”, Journal of Computational Physics, 213 (2006), 311–329 | DOI | MR | Zbl

[11] J. J. Erpenbeck, “Stability of steady-state equilibrium detonations”, Physics of Fluids, 5 (1962), 604–614 | DOI | MR

[12] L. K. Cole, A. R. Karagozian, J.-L. Cambier, “Stability of flame-shock coupling in detonation waves: 1D dynamics”, Combustion Science and Technology, 184:10–11 (2012), 1502–1525 | DOI

[13] A. S. Kholodov, “Chislennye metody resheniia uravnenii i sistem giperbolicheskogo tipa”, Entsiklopediia nizkotemperaturnoi plazmy, v. 2, 2008, 220–235

[14] C.-W. Shu, Essentially non-oscillatory and weighted essentially non-oscillatory schemes for hyperbolic conservation laws, NASA/CR-97-206253, ICASE Report No 97-65, 1997 | MR

[15] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77 (1988), 439–471 | DOI | MR | Zbl

[16] A. I. Lopato, P. S. Utkin, “Matematicheskoe modelirovanie pulsiruiushchei volny detonatsii s ispolzovaniem ENO-skhem razlichhykh poriadkov approksimatsii”, Kompiuternye issledovaniia i modelirovanie, 6:5 (2014), 643–653

[17] A. A. Vasilev, V. V. Mitrofanov, M. E. Topchiian, “Detonatsionnye volny v gazakh”, Fizika goreniia i vzryva, 1987, no. 5, 109–131