Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_2_a10, author = {V. I. Golubev and I. B. Petrov and N. I. Khokhlov}, title = {Compact grid-characteristic schemes of higher orders for {3D} linear transport equation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {123--132}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/} }
TY - JOUR AU - V. I. Golubev AU - I. B. Petrov AU - N. I. Khokhlov TI - Compact grid-characteristic schemes of higher orders for 3D linear transport equation JO - Matematičeskoe modelirovanie PY - 2016 SP - 123 EP - 132 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/ LA - ru ID - MM_2016_28_2_a10 ER -
%0 Journal Article %A V. I. Golubev %A I. B. Petrov %A N. I. Khokhlov %T Compact grid-characteristic schemes of higher orders for 3D linear transport equation %J Matematičeskoe modelirovanie %D 2016 %P 123-132 %V 28 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/ %G ru %F MM_2016_28_2_a10
V. I. Golubev; I. B. Petrov; N. I. Khokhlov. Compact grid-characteristic schemes of higher orders for 3D linear transport equation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 123-132. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/
[1] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Fizmatlit, M., 1994, 448 pp.
[2] V. Rusanov, “Calculation of intersection of non-steady shock waves with obstacles”, J. Comput. Math. Phys. USSR, 1 (1961), 267–279 | MR
[3] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Computational Mathematics and Mathematical Physics, 46:9 (2006), 1560–1588 | DOI | MR
[4] V. G. Grudnitskij, Iu. A. Prokhorchuk, “Odin priem postroeniia raznostnykh skhem s proizvolnym poriadkom approksimazii differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 234:6 (1977), 1249–1252 | MR | Zbl
[5] I. V. Petukhov, “Chislennyi raschet dvumernykh techenii v pogranichnom sloe”, Chislennye metody resheniia differ. i integr. ur-ii i kvadraturnye formuly, Izd-vo AN SSSR, 1964
[6] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Mathematical Models and Computer Simulations, 5:4 (2013), 346–349 | DOI | MR | Zbl
[7] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR
[8] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic bicompact schemes for linear transport equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl
[9] Yabe Takashi, Aoki Takayuki, Sakaguchi Gyo, Wang Py, Ishikawa Takeo, “The compact CIP (Cubic-Interpolated Pseudo-particle) method as a general hyperbolic solver”, Computers Fluids, 19:3–4 (1991), 421–431 | DOI | MR | Zbl
[10] Yabe Takashi, Mizoe Hiroki, Takizawa Kenji, Moriki Hiroshi, Im Hyo-Nam, Ogata Youichi, “Higher-order schemes with CIP method and adaptive Soroban grid towards meshfree scheme”, Journal of Computational Physics, 194:1 (2004), 57–77 | DOI | Zbl
[11] I. B. Petrov, N. I. Khokhlov, “Kompaktnaia setochno-kharakteristicheskaia schema dlia lineinogo uravneniia perenosa”, Modelirovanie protsessov obrabotki informatsii, Sb. nauchn. tr., MFTI, M., 2014, 18–22
[12] K. M. Magomedov, A. S. Kholodov, “The construction of difference schemes for hyperbolic equations based on characteristic relations”, USSR Computational Mathematics and Mathematical Physics, 9:2 (1969), 158–176 | DOI | MR | Zbl
[13] I. B. Petrov, A. S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type”, USSR Computational Mathematics and Mathematical Physics, 24:4 (1984), 128–138 | DOI | MR | Zbl
[14] Bram Van Leer, “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, Journal of Computational Physics, 32:1 (1979), 101–136 | DOI | MR
[15] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Obobshchenie kompaktnoi skhemy dlya lineinogo uravneniia perenosa na dvumernyi sluchai”, Modelirovanie protsessov obrabotki informatsii, Sb. nauchn. tr., MFTI, M., 2014, 23–26
[16] R. Courant, E. Isaacson, M. Rees, “On the solutions of nonlinear hyperbolic differential equations by finite differences”, Communications on Pure and Applied Mathematics, 5:5 (1952), 243–254 | DOI | MR