Compact grid-characteristic schemes of higher orders for 3D linear transport equation
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 123-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical solution of 3D linear transport equation on parallelepiped grids is described. With the usage of split along coordinate axis technique compact grid-characteristic schemes of higher orders were generalized up to 3D case. The influence of separate steps of the algorithm on the precision of the final scheme was estimated. The approach for preserving the convergence order of scheme on smooth solution and minimize unphysical oscillations on discontinuous solution in 3D was proposed.
Keywords: computer simulation, compact schemes, numerical grid-characteristic method
Mots-clés : transport equation.
@article{MM_2016_28_2_a10,
     author = {V. I. Golubev and I. B. Petrov and N. I. Khokhlov},
     title = {Compact grid-characteristic schemes of higher orders for {3D} linear transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {123--132},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/}
}
TY  - JOUR
AU  - V. I. Golubev
AU  - I. B. Petrov
AU  - N. I. Khokhlov
TI  - Compact grid-characteristic schemes of higher orders for 3D linear transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 123
EP  - 132
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/
LA  - ru
ID  - MM_2016_28_2_a10
ER  - 
%0 Journal Article
%A V. I. Golubev
%A I. B. Petrov
%A N. I. Khokhlov
%T Compact grid-characteristic schemes of higher orders for 3D linear transport equation
%J Matematičeskoe modelirovanie
%D 2016
%P 123-132
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/
%G ru
%F MM_2016_28_2_a10
V. I. Golubev; I. B. Petrov; N. I. Khokhlov. Compact grid-characteristic schemes of higher orders for 3D linear transport equation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 123-132. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a10/

[1] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnykh sred, Fizmatlit, M., 1994, 448 pp.

[2] V. Rusanov, “Calculation of intersection of non-steady shock waves with obstacles”, J. Comput. Math. Phys. USSR, 1 (1961), 267–279 | MR

[3] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Computational Mathematics and Mathematical Physics, 46:9 (2006), 1560–1588 | DOI | MR

[4] V. G. Grudnitskij, Iu. A. Prokhorchuk, “Odin priem postroeniia raznostnykh skhem s proizvolnym poriadkom approksimazii differentsialnykh uravnenii v chastnykh proizvodnykh”, Dokl. AN SSSR, 234:6 (1977), 1249–1252 | MR | Zbl

[5] I. V. Petukhov, “Chislennyi raschet dvumernykh techenii v pogranichnom sloe”, Chislennye metody resheniia differ. i integr. ur-ii i kvadraturnye formuly, Izd-vo AN SSSR, 1964

[6] M. E. Ladonkina, O. A. Neklyudova, V. F. Tishkin, “Impact of different limiting functions on the order of solution obtained by RKDG”, Mathematical Models and Computer Simulations, 5:4 (2013), 346–349 | DOI | MR | Zbl

[7] A. I. Tolstykh, Kompaktnye raznostnye skhemy i ikh primenenie v zadachakh aerogidrodinamiki, Nauka, M., 1990, 230 pp. | MR

[8] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic bicompact schemes for linear transport equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | DOI | MR | Zbl

[9] Yabe Takashi, Aoki Takayuki, Sakaguchi Gyo, Wang Py, Ishikawa Takeo, “The compact CIP (Cubic-Interpolated Pseudo-particle) method as a general hyperbolic solver”, Computers Fluids, 19:3–4 (1991), 421–431 | DOI | MR | Zbl

[10] Yabe Takashi, Mizoe Hiroki, Takizawa Kenji, Moriki Hiroshi, Im Hyo-Nam, Ogata Youichi, “Higher-order schemes with CIP method and adaptive Soroban grid towards meshfree scheme”, Journal of Computational Physics, 194:1 (2004), 57–77 | DOI | Zbl

[11] I. B. Petrov, N. I. Khokhlov, “Kompaktnaia setochno-kharakteristicheskaia schema dlia lineinogo uravneniia perenosa”, Modelirovanie protsessov obrabotki informatsii, Sb. nauchn. tr., MFTI, M., 2014, 18–22

[12] K. M. Magomedov, A. S. Kholodov, “The construction of difference schemes for hyperbolic equations based on characteristic relations”, USSR Computational Mathematics and Mathematical Physics, 9:2 (1969), 158–176 | DOI | MR | Zbl

[13] I. B. Petrov, A. S. Kholodov, “Regularization of discontinuous numerical solutions of equations of hyperbolic type”, USSR Computational Mathematics and Mathematical Physics, 24:4 (1984), 128–138 | DOI | MR | Zbl

[14] Bram Van Leer, “Towards the ultimate conservative difference scheme. V: A second-order sequel to Godunov's method”, Journal of Computational Physics, 32:1 (1979), 101–136 | DOI | MR

[15] V. I. Golubev, I. B. Petrov, N. I. Khokhlov, “Obobshchenie kompaktnoi skhemy dlya lineinogo uravneniia perenosa na dvumernyi sluchai”, Modelirovanie protsessov obrabotki informatsii, Sb. nauchn. tr., MFTI, M., 2014, 23–26

[16] R. Courant, E. Isaacson, M. Rees, “On the solutions of nonlinear hyperbolic differential equations by finite differences”, Communications on Pure and Applied Mathematics, 5:5 (1952), 243–254 | DOI | MR