Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_2_a1, author = {Valentin A. Gushchin}, title = {On a one family of quasimonotone finite-difference schemes of the second order of approximation}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {6--18}, publisher = {mathdoc}, volume = {28}, number = {2}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a1/} }
TY - JOUR AU - Valentin A. Gushchin TI - On a one family of quasimonotone finite-difference schemes of the second order of approximation JO - Matematičeskoe modelirovanie PY - 2016 SP - 6 EP - 18 VL - 28 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a1/ LA - ru ID - MM_2016_28_2_a1 ER -
Valentin A. Gushchin. On a one family of quasimonotone finite-difference schemes of the second order of approximation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 6-18. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a1/
[1] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47 (89):3 (1959), 271–306 | MR | Zbl
[2] K. O. Friedrichs, “Symmetric hyperbolic linear differential equations”, Communications on Pure and Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl
[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:2 (1987), 357–393 | MR
[4] von J. Neumann, R. D. Richtmyer, “A method for numerical calculations of hydrodynamic shocks”, J. Appl. Phys., 21:1 (1950), 232–237 | MR | Zbl
[5] A. A. Samarskii, “Regularization of difference schemes”, USSR Computational Mathematics and Mathematical Physics, 7:1 (1967), 79–120 | DOI | MR
[6] L. A. Chudov, Nekotorye primeneniia raznostnykh metodov v mekhanike zhidkostei i gaza, Diss. ... dokt. fiz.-mat. nauk, Inst. problem mekhaniki AN SSSR, M., 1967
[7] V. P. Kolgan, “The use of smoothing operators in difference schemes of a high order of accuracy”, USSR Comput. Mathematics and Mathematical Physics, 18:5 (1978), 267–273 | DOI | MR | Zbl
[8] K. Sakai, T. Kanno, I. Kimura, H. Hishida, “Mathematical foundation of numerical calculations for linear and non-linear advection-diffusion equations”, CFD Journal, 14:4(47) (2006), 420–435
[9] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comput. Mathem. and Mathem. Physics, 46:9 (2006), 1560–1588 | DOI | MR
[10] A. G. Kulikovskii, N. V. Pogorelov, A. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Nauka, M., 2001, 608 pp. | MR
[11] R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, USSR Comput. Mathem. and Mathem. Physics, 2:6 (1963), 1355–1365 | DOI | MR | Zbl
[12] O. M. Belotserkovskii, V. A. Gushchin, V. N. Konshin, “The splitting method for investigating flows of a stratified liquid with a free surface”, USSR Comput. Mathematics and Mathematical Physics, 27:2 (1987), 181–191 | DOI | MR | Zbl
[13] V. A. Gushchin, V. N. Konshin, “Computational aspects of the splitting method for incompressible flow with a free surface”, J. of Computers and Fluids, 21:3 (1992), 345–353 | DOI | Zbl
[14] V. A. Gushchin, A. V. Kostomarov, P. V. Matyushin, E. R. Pavlyukova, “Direct Numerical Simulation of the Transitional Separated Fluid Flows Around a Sphere and a Circular Cylinder”, J. of Wind Engineering Industrial Aerodynamics, 90:4–5 (2002), 341–358 | DOI
[15] V. A. Gushchin, P. V. Matyushin, “Vortex formation mechanisms in the wake behind a sphere for $200 Re 380$”, Fluid Dynamics, 41:5 (2006), 795–809 | DOI | Zbl
[16] V. A. Gushchin, P. V. Matyushin, “Numerical Simulation and Visualization of Vortical Structure Transformation in the Flow past a Sphere at an Increasing Degree of Stratification”, Computational Mathematics and Mathematical Physics, 51:2 (2011), 251–263 | DOI | MR | Zbl