On a one family of quasimonotone finite-difference schemes of the second order of approximation
Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 6-18.

Voir la notice de l'article provenant de la source Math-Net.Ru

Using a simple model of a linear transport equation a family of hybrid monotone finite difference schemes has been constructed. By the analysis of the differential approximation it was shown that the resulting family has a second-order approximation in the spatial variable, has minimal scheme viscosity and dispersion and monotonous. It is shown that the region of operability of the base schemes (Modified Central Difference Schemes (MCDS) and Modified Upwind Difference Schemes (MUDS)) is a non-empty set. The local criterion for switching between the base schemes is based on the sign of the product of the velocity, the first and second differences of the transferred functions at the considered point. On the solution of the Cauchy problem provides a graphical comparison of the calculation results obtained using the known schemes of the first, second and third order approximation.
Keywords: finite difference schemes, monotonicity of finite difference schemes, hybrid finite difference schemes, criterion for switching.
@article{MM_2016_28_2_a1,
     author = {Valentin A. Gushchin},
     title = {On a one family of quasimonotone finite-difference schemes of the second order of approximation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {6--18},
     publisher = {mathdoc},
     volume = {28},
     number = {2},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_2_a1/}
}
TY  - JOUR
AU  - Valentin A. Gushchin
TI  - On a one family of quasimonotone finite-difference schemes of the second order of approximation
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 6
EP  - 18
VL  - 28
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_2_a1/
LA  - ru
ID  - MM_2016_28_2_a1
ER  - 
%0 Journal Article
%A Valentin A. Gushchin
%T On a one family of quasimonotone finite-difference schemes of the second order of approximation
%J Matematičeskoe modelirovanie
%D 2016
%P 6-18
%V 28
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_2_a1/
%G ru
%F MM_2016_28_2_a1
Valentin A. Gushchin. On a one family of quasimonotone finite-difference schemes of the second order of approximation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 2, pp. 6-18. http://geodesic.mathdoc.fr/item/MM_2016_28_2_a1/

[1] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii gidrodinamiki”, Matem. sb., 47 (89):3 (1959), 271–306 | MR | Zbl

[2] K. O. Friedrichs, “Symmetric hyperbolic linear differential equations”, Communications on Pure and Appl. Math., 7:2 (1954), 345–392 | DOI | MR | Zbl

[3] A. Harten, “High resolution schemes for hyperbolic conservation laws”, J. Comput. Phys., 49:2 (1987), 357–393 | MR

[4] von J. Neumann, R. D. Richtmyer, “A method for numerical calculations of hydrodynamic shocks”, J. Appl. Phys., 21:1 (1950), 232–237 | MR | Zbl

[5] A. A. Samarskii, “Regularization of difference schemes”, USSR Computational Mathematics and Mathematical Physics, 7:1 (1967), 79–120 | DOI | MR

[6] L. A. Chudov, Nekotorye primeneniia raznostnykh metodov v mekhanike zhidkostei i gaza, Diss. ... dokt. fiz.-mat. nauk, Inst. problem mekhaniki AN SSSR, M., 1967

[7] V. P. Kolgan, “The use of smoothing operators in difference schemes of a high order of accuracy”, USSR Comput. Mathematics and Mathematical Physics, 18:5 (1978), 267–273 | DOI | MR | Zbl

[8] K. Sakai, T. Kanno, I. Kimura, H. Hishida, “Mathematical foundation of numerical calculations for linear and non-linear advection-diffusion equations”, CFD Journal, 14:4(47) (2006), 420–435

[9] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Comput. Mathem. and Mathem. Physics, 46:9 (2006), 1560–1588 | DOI | MR

[10] A. G. Kulikovskii, N. V. Pogorelov, A. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, Nauka, M., 2001, 608 pp. | MR

[11] R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, USSR Comput. Mathem. and Mathem. Physics, 2:6 (1963), 1355–1365 | DOI | MR | Zbl

[12] O. M. Belotserkovskii, V. A. Gushchin, V. N. Konshin, “The splitting method for investigating flows of a stratified liquid with a free surface”, USSR Comput. Mathematics and Mathematical Physics, 27:2 (1987), 181–191 | DOI | MR | Zbl

[13] V. A. Gushchin, V. N. Konshin, “Computational aspects of the splitting method for incompressible flow with a free surface”, J. of Computers and Fluids, 21:3 (1992), 345–353 | DOI | Zbl

[14] V. A. Gushchin, A. V. Kostomarov, P. V. Matyushin, E. R. Pavlyukova, “Direct Numerical Simulation of the Transitional Separated Fluid Flows Around a Sphere and a Circular Cylinder”, J. of Wind Engineering Industrial Aerodynamics, 90:4–5 (2002), 341–358 | DOI

[15] V. A. Gushchin, P. V. Matyushin, “Vortex formation mechanisms in the wake behind a sphere for $200 Re 380$”, Fluid Dynamics, 41:5 (2006), 795–809 | DOI | Zbl

[16] V. A. Gushchin, P. V. Matyushin, “Numerical Simulation and Visualization of Vortical Structure Transformation in the Flow past a Sphere at an Increasing Degree of Stratification”, Computational Mathematics and Mathematical Physics, 51:2 (2011), 251–263 | DOI | MR | Zbl