3D hexagonal parallel code QuDiff for fast reactor critical parameters calculations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 107-116.

Voir la notice de l'article provenant de la source Math-Net.Ru

Applicable for high-performance computational environments parallel code QuDiff for fast reactor critical parameters calculations has been implemented based on a sequential version. A multigroup transport equation calculation method was build upon V.Ya.Goldin's quasi-diffusion method. For efficient algorithm construction it was suggested to use all the reactor assembly symmetries, possible for self-adjustable neutron-nuclear regime of operation. MPI was applied as a parallel interface. Domain decomposition method was utilized. Pipelined parallelization of transport equation has been used for its consistency with quasi-diffusion system of equations parallelization. Calculations of 3D active zone model of the BN-800 type reactor capable of operating in self-adjustable neutron-nuclear regime showed that parallel code QuDiff is highly scalable. It is assumed to use most of the results of this work in dynamical numerical simulation of fast reactors' active zones.
Mots-clés : transport equation, quasi-diffusion method
Keywords: parallel calculations.
@article{MM_2016_28_1_a7,
     author = {D. F. Baydin and E. N. Aristova},
     title = {3D hexagonal parallel code {QuDiff} for fast reactor critical parameters calculations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {107--116},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_1_a7/}
}
TY  - JOUR
AU  - D. F. Baydin
AU  - E. N. Aristova
TI  - 3D hexagonal parallel code QuDiff for fast reactor critical parameters calculations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 107
EP  - 116
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_1_a7/
LA  - ru
ID  - MM_2016_28_1_a7
ER  - 
%0 Journal Article
%A D. F. Baydin
%A E. N. Aristova
%T 3D hexagonal parallel code QuDiff for fast reactor critical parameters calculations
%J Matematičeskoe modelirovanie
%D 2016
%P 107-116
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_1_a7/
%G ru
%F MM_2016_28_1_a7
D. F. Baydin; E. N. Aristova. 3D hexagonal parallel code QuDiff for fast reactor critical parameters calculations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 107-116. http://geodesic.mathdoc.fr/item/MM_2016_28_1_a7/

[1] L. P. Feoktistov, Analis odnoi koncepcii fizicheski bezopasnogo reaktora, Preprint IAE-4605/4, 1988

[2] L. P. Feoktistov, “Bezopasnost — kluchevoi moment vozrozhdenia yadernoi energetiki”, Uspehi fizicheskich nauk, 1993, no. 8, 89–102 | DOI | MR

[3] L. P. Feoktistov, “An ideal reactor for nuclear power stations”, Doklady Physics, 42:6 (1997), 302–305

[4] V. Ya. Goldin, D. Yu. Anistratov, “Reaktor na bystrych neitronah v samoreguliruemom neitronnoyadernom regime”, Matematicheskoie modelirovanie, 7:10 (1995), 12–32

[5] V. Ya. Goldin, G. A. Pestryakova, Yu. V. Troshchiev, “Usovershenstvovanie matematicheskoi modeli samoreguliruemogo reaktora”, Matematicheskoie modelirovanie, 14:12 (2002), 39–47

[6] V. Ya. Goldin, Yu. V. Troshchiev, “Control of the Power of a Fast Reactor in the Self-Regulation Regime and Reactor Startup”, Atomic energy, 98:1 (2005), 15–20 | DOI

[7] V. Ya. Goldin, “A Quasi-Diffusion Method of Solving The Kinetic Equation”, USSR Comput. Math. Math. Phys., 4 (1964), 136 | DOI | MR

[8] V. Ya. Goldin, “O matematicheskom modelirovanii zadach sploshnoi sredy s neravnonesnym perenosom”, Sovremennye problemy matematicheskoi fiziki i vychislitel'noi matematiki, Nauka, M., 1982, 113–127

[9] E. N. Aristova, V. Ya. Goldin, “Raschet uravnenia perenosa neitronov sovmestno s uravneniami kvazidiffuzii v $r$-$z$ geometrii”, Matematicheskoie modelirovanie, 18:11 (2006), 61–66 | MR | Zbl

[10] E. N. Aristova, D. F. Baydin, “Implementation of the quasi-diffusion method for calculating the critical parameters of a fast neutron reactor in 3D hexagonal geometry”, Mathematical Models and Computer Simulations, 5:2 (2013), 145–155 | DOI | MR

[11] E. N. Aristova, D. F. Baydin, “Efficiency of quasi-diffusion method for calculating critical parameters of a fast reactor”, Mathematical Models and Computer Simulations, 4:6 (2012), 568–573 | DOI | Zbl

[12] M. N. Nikolaev, A. M. Tsibulya, A. G. Tsikunov i dr., Kompleks programm CONSYST/ABBN — podgotovka konstant BNAB k raschetam rektorov i zaschity, Otchet GNC RF FEI No 9865, 1998

[13] V. V. Voevodin, Vl. V. Voevodin, Parallelnye vychislenia, BHV-Petersburg, SPb., 2002, 600 pp.

[14] A. A. Bukatov, B. N. Dacuk, A. I. Zhegulo, Programmirovanie mnogoprocessornyh vychislitelnyh sistem, Izdatelstvo OOO “CVVR”, Rostov-na-Donu, 2003, 208 pp.

[15] N. N. Olenev, Osnovy parallelnogo programmirovaniya v sisteme MPI, VC RAN, M., 2005, 80 pp.

[16] V. D. Korneev, Parallelnoe programmirovanie v MPI, SO RAN, Novosobirsk, 2000, 213 pp.