Geometrical modeling of parabolic reflector's metallic mesh deformation
Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 97-106.

Voir la notice de l'article provenant de la source Math-Net.Ru

This article shows construction of a geometrical model of a well-known 'mattress effect', it is similar to that observed while opening an umbrella. The main hypothesis is: the surface of metallic mesh of parabolic reflector — in an isotropic case — takes a shape close to a minimal surface. We have taken into account the fact that for the orthotropic metalic mesh the sum of principal curvatures is farther from zero than in the isotropic case. The area of model's reliability has been studied in detail. Mathematical apparatus of the model is the classical differential geometry.
Keywords: parabolic reflector, principal curvatures, orthotropy, minimal surface, plotting the surface by forming a family of curves.
@article{MM_2016_28_1_a6,
     author = {M. S. Bukhtyak},
     title = {Geometrical modeling of parabolic reflector's metallic mesh deformation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--106},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_1_a6/}
}
TY  - JOUR
AU  - M. S. Bukhtyak
TI  - Geometrical modeling of parabolic reflector's metallic mesh deformation
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 97
EP  - 106
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_1_a6/
LA  - ru
ID  - MM_2016_28_1_a6
ER  - 
%0 Journal Article
%A M. S. Bukhtyak
%T Geometrical modeling of parabolic reflector's metallic mesh deformation
%J Matematičeskoe modelirovanie
%D 2016
%P 97-106
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_1_a6/
%G ru
%F MM_2016_28_1_a6
M. S. Bukhtyak. Geometrical modeling of parabolic reflector's metallic mesh deformation. Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 97-106. http://geodesic.mathdoc.fr/item/MM_2016_28_1_a6/

[1] M. V. Grianik, V. I. Loman, Razvertyvaemye zerkalnye antenny zontichnogo tipa, Radio i sviaz, M., 1987, 72 pp.

[2] J. M. Hedgepeth, “Accuracy Potential for Large Space Antenna Reflectors with Passive Structire”, J. Spacecraft, 19:3 (1982), 211–217 | DOI

[3] A. V. Aziukin, “Spetsifika DN i KND zerkalnykh zontichnykh antenn”, Analiz i sintez antennykh system, ed. G. G. Bubnov, M., 1984, 82–88

[4] P. G. Ingerson, W. C. Wong, “The Analysis of Deployable Umbrella Parabolic Reflectors”, IEEE Trans., AP-20:4 (1972), 409–414 | DOI

[5] A. V. Aziukin, V. I. Klassen, “O napravlennykh svoistvakh raskryvaiushchikhsia zerkalnykh antenn”, Radiotekhnika i elektronika, 27:8 (1982), 1519–1526

[6] P. K. Rashevskii, Kurs differentsialnoi geometrii, GITTL, M.–L., 1950, 428 pp.

[7] Zh. Favar, Kurs lokalnoi differentsialnoi geometrii, GITTL, M., 1960, 559 pp.