Simulation of micelles conduct using stochastic model of storage
Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 47-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

Aggregate of molecules of surfactants — the micelle — is regarded as a storage system according to stochastic theory of storage. Molecules with a given distribution come in it and come out by the given law. Expressions for the unsteady average and the second moment of a random number of molecules in a micelle and for the partition of equilibrium micelles are obtained. Conditions for the existence of а potential well corresponding to possibility of the existence of micelles are found for a given input and output models. Also a limitations on the existence of stationary distributions for the number of monomers in a micelle are defined. Lifetimes of micelles are estimated in micellar and critical areas.
Mots-clés : micelles, distribution.
Keywords: stochastic storage model
@article{MM_2016_28_1_a3,
     author = {V. V. Ryazanov},
     title = {Simulation of micelles conduct using stochastic model of storage},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {47--64},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_1_a3/}
}
TY  - JOUR
AU  - V. V. Ryazanov
TI  - Simulation of micelles conduct using stochastic model of storage
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 47
EP  - 64
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_1_a3/
LA  - ru
ID  - MM_2016_28_1_a3
ER  - 
%0 Journal Article
%A V. V. Ryazanov
%T Simulation of micelles conduct using stochastic model of storage
%J Matematičeskoe modelirovanie
%D 2016
%P 47-64
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_1_a3/
%G ru
%F MM_2016_28_1_a3
V. V. Ryazanov. Simulation of micelles conduct using stochastic model of storage. Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 47-64. http://geodesic.mathdoc.fr/item/MM_2016_28_1_a3/

[1] A. I. Rusanov, Mitselloobrazovanie v rastvorakh poverkhnostno-aktivnykh veshchestv, Khimiia, SPb., 1992, 280 pp.

[2] A. I. Rusanov, F. M. Kuni, A. K. Shchekin, “Thermodynamic and Kinetic Foundations of the Theory of Micellization. 1: General Aspects”, Colloid J., 62:2 (2000), 167–171 | MR

[3] F. M. Kuni, A. P. Grinin, A. K. Shchekin, A. I. Rusanov, “Thermodynamic and Kinetic Foundations of the Theory of Micellization. 2: Direct and Reverse Fluxes of Molecular Aggregates over the Activation Barrier of Micellization”, Colloid J., 62:2 (2000), 172–178

[4] F. M. Kuni, A. P. Grinin, A. K. Shchekin, A. I. Rusanov, “Thermodynamic and kinetic foundations of the theory of micellization. 3: Initial stages of micellization”, Colloid J., 62:4 (2000), 451–456 | MR

[5] F. M. Kuni, A. P. Grinin, A. K. Shchekin, A. I. Rusanov, “Thermodynamic and kinetic foundations of the theory of micellization. 4: Kinetics of the establishment of equilibrium in a micellar solution”, Colloid J., 63:2 (2001), 197–204 | DOI

[6] F. M. Kuni, A. P. Grinin, A. K. Shchekin, A. I. Rusanov, “Thermodynamic and Kinetic Foundations of the Micellization Theory. 5: Hierarchy of Kinetic Times”, Colloid J., 63:6 (2001), 723–730 | DOI

[7] R. Nagarajan, E. Ruckenstein, “Relation Between the Transition Point in Micellar Size Distribution, the CMC, and the Cooperativity of Micellization”, J. Coll. Int. Sci., 91:2 (1983), 500–506 | DOI

[8] A. K. Shchekin, F. M. Kuni, A. P. Grinin, A. I. Rusanov, “Nucleation in Micellization Processes”, Nucleation Theory and Applications, ed. J. W. P. Schmelzer, WILEY-VCH, Berlin–Weinheim, 2005, 312–374 | DOI

[9] A. I. Rusanov, A. K. Shchekin, F. M. Kuni, “Thermodynamic and Kinetic Theory of Ionic Micellar Systems. 1: Work of Aggregation”, Colloid J., 71:6 (2009), 816–825 | DOI

[10] N. U. Prabhu, Queues and Inventories: A Study of Their Basic Stochastic Processes, John Wiley, NY, 1965, 322 pp. | MR | Zbl

[11] N. U. Prabhu, Stochastic Storage Processes: Queues, Insurance Risks, and Dams, Springer-Verlag, NY, 1980, 147 pp. | MR

[12] P. J. Brockwell, S. I. Resnick, R. L. Tweedie, “Storage processes with general release rule and additive inputs”, Adv. Appl. Prob., 14 (1982), 392–433 | DOI | MR | Zbl

[13] V. V. Ryazanov, “Stochasticheskoe modelirovanie v neravnovesnoi termodinamike i vremena zhizni system”, Fizika zhidkogo sostoyaniya, 20 (1992), 11–36, Izd-vo “Lybid”, Kiev | MR

[14] V. V. Ryazanov, “Stochasticheskaya neravnovesnaya termodinamika i vremya”, Ukrainskiy fizicheskiy zhurnal, 38:4 (1993), 615–631 | MR

[15] V. V. Ryazanov, “Stochastic Description of Aerosol Systems”, Journal of aerosol Science, 1991, Suppl. 1, 59–64

[16] V. V. Ryazanov, “Kinetics of coagulation and stochastic processes of the storage theory”, Aerosols: Sciense, Indystry, Health and Environment, v. 1, Pergamon Press, Kyoto, 1990, 142–145

[17] V. V. Ryazanov, S. G. Shpyrko, “Stationary distributions of the size of coagulating clusters in self-matching storage model”, Journal of Aerosol Science, 27, Suppl. 1 (1996), 277–278

[18] V. V. Ryazanov, S. G. Shpyrko, “General stochastic approach to the description of coagulating aerosol systems and stochastic storage model”, Journal of Aerosol Science, 28 (1997), 647–648

[19] V. V. Ryazanov, “Modelling Coagulation Systems: A Stochastic Approach”, Applied Mathematics, 1:1 (2011), 1–6 | MR

[20] S. G. Shpyrko, V. V. Ryazanov, “Stochastic storage model and noise-induced phase transitions”, Eur. Phys J. B, 54 (2006), 345–354 | DOI

[21] V. V. Ryazanov, “The description of kinetics of nuclear reactors in view of feedback and effects of control by means of generalization of stochastic models of storage”, Proceedings of the 2nd Intern. Conference Current Problems in Nuclear Physics and Atomic Energy (Kiev, 2009), 646–649

[22] R. L. Stratonovich, Nelineinaia neravnovesnaia termodinamika, Nauka, M., 1985, 480 pp. | MR

[23] V. S. Koroliuk, N. I. Portenko, A. V. Skorokhod, A. F. Turbin, Spravochnik po teorii veroiatnostei i matematicheskoi statistike, 2-e izd. pererab. dop., Nauka, M., 1985, 640 pp. | MR

[24] V. V. Ryazanov, “Opisanie molekulyarnych system s pomoshchiu modelnogo proizvodyashchego funktsionala”, Fizika zhidkogo sostoyaniya, 5 (1977), 103–108, Izd-vo “Lybid”, Kiev

[25] M. Abramowitz, I. A. Stegun, Handbook of mathematical functions, Applied Mathematics Series, 55, D.C. National Bureau of Standards, Washington, 1964, 1047 pp. | MR | MR

[26] D. S. Grebenkov, Issledovanie relaksatsii modelnogo mitselliarnogo rastvora, Avtoref. ... diss. kand. fiz.-mat. nauk, Sankt-Peterb. gosud. universitet, Sankt-Peterburg, 2003