The research of change in the complex velocity area in some problems of filtration theory
Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 33-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

We study a question about possible transformations of complex flow velocity area in some problems of filtration theory depending on ranges of change constant of conformal mapping, which is contained in forms for mapping function. We examine a linear differential equation of the Fuchsian class, which conform to problem of conformal mapping circular hexagons in polar grid, typical for problems of filtration theory. It has been shown, that at fixing parameter, characterizing ratio of circles radii, constituting opposite sides of polygons in the complex flow velocity area, configuration of section appreciably depend on not only the properties of the functions, according to which design partial solution of the equation under consideration, but also depend on ranges of change constants of conformal mapping. It turns out that individual ranges of change these parameters may conform different on their configurations sections, which is demonstration transformation of filtration fluid flows depending on impact different physical factors and, the first of all, from evaporating rate or infiltration to the free surface.
Keywords: flow of fluid, Fuchs differential equations, conformal mappings, area of complex velocity, Jacobi elliptic functions, Theta functions.
Mots-clés : filtration, sections
@article{MM_2016_28_1_a2,
     author = {E. N. Bereslavskii},
     title = {The research of change in the complex velocity area in some problems of filtration theory},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--46},
     publisher = {mathdoc},
     volume = {28},
     number = {1},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_1_a2/}
}
TY  - JOUR
AU  - E. N. Bereslavskii
TI  - The research of change in the complex velocity area in some problems of filtration theory
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 33
EP  - 46
VL  - 28
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_1_a2/
LA  - ru
ID  - MM_2016_28_1_a2
ER  - 
%0 Journal Article
%A E. N. Bereslavskii
%T The research of change in the complex velocity area in some problems of filtration theory
%J Matematičeskoe modelirovanie
%D 2016
%P 33-46
%V 28
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_1_a2/
%G ru
%F MM_2016_28_1_a2
E. N. Bereslavskii. The research of change in the complex velocity area in some problems of filtration theory. Matematičeskoe modelirovanie, Tome 28 (2016) no. 1, pp. 33-46. http://geodesic.mathdoc.fr/item/MM_2016_28_1_a2/

[1] P. Ia. Polubarinova-Kochina, Teoriia dvizheniia gruntovykh vod, Gostekhizdat, M., 1952; 2-e izd., Nauka, M., 1977

[2] V. I. Aravin, S. N. Numerov, Teoriia dvizheniia zhidkostei i gazov v nedeformiruemoi poristoi srede, Gostekhizdat, M., 1953

[3] P. Ia. Polubarinova-Kochina (ed.), Razvitie issledovanii po teorii filtratsii v SSSR (1917–1967), Nauka, M., 1967

[4] G. K. Mikhailov, V. N. Nikolaevskii, “Dvizhenie zhidkostei i gazov v poristykh sredakh”, Mekhanika v SSSR za 50 let, v. 2, Nauka, M., 1970, 585–648

[5] P. Ia. Kochina, Gidrodinamika i teoriia filtratsii. Izbrannye tr., Nauka, M., 1991

[6] P. Ia. Kochina, E. N. Bereslavskii, N. N. Kochina, Analiticheskaia teoriia lineinykh differentsialnykh uravnenii klassa Fuksa i nekotorye zadachi podzemnoi gidromekhaniki, 1, preprint No 567, Institut problem mekhaniki RAN, M., 1996, 122 pp.

[7] E. N. Bereslavskii, P. Ia. Kochina, “Some equations of the Fuchs class in hydro- and aeromechanics”, Fluid Dynamics, 27:5 (1992), 603–607 | DOI | MR

[8] E. N. Bereslavskii, P. Ia. Kochina, “Differential equations of the Fuchs class encountered in some problems of mechanics of liguids and gases”, Fluid Dynamics, 32:5 (1997), 619–625 | MR | MR

[9] W. Koppenfels, F. Stallmann, Praxis der konformen abbildung, Springer-Verlag, Berlin–Göttingen–Heidelberg, 1959 | MR | Zbl

[10] E. N. Bereslavskii, “O konformnom otobrazhenii nekotorykh krugovykh mnogougolnikov na priamougolnik”, Izv. vuzov. Matematika, 1980, no. 5, 3–7

[11] E. N. Bereslavskii, “On differential equations of the Fuchs class associated with the conformal mapping of circular polygons in polar grids”, Differ. Equations, 33:3 (1997), 296–301 | MR | Zbl

[12] E. N. Bereslavskii, “On the integrals of some differential equations of the Fuchs type occurring in problems of fluid and gas mechanics”, Differ. Equations, 48:4 (2012), 599–603 | DOI | MR | Zbl

[13] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, University Press, Cambridge, 1927 | MR | Zbl

[14] V. V. Golubev, Lektsii po analiticheskoi teorii differentsialnykh uravnenii, Gostekhizdat, M.–L., 1950

[15] E. N. Bereslavskii, “Matematicheskoe modelirovanie filtratsionnykh techenii iz kanalov i orositelei”, Tr. sem. po kraevym zadacham, 25, Kazan, 1990, 70–90

[16] E. N. Bereslavskii, “Transformations of sections upon the conformal mapping of certain circular polygons appearing in flow problems with free surface”, Dokl. physics, 58:7 (2013), 301–304 | DOI | DOI | MR

[17] I. N. Kochina, P. Ia. Polubarinova-Kochina, “O primenenii plavnykh konturov osnovaniia gidrotekhnicheskikh sooruzhenii”, Prikl. matem. i mekhanika, 16:1 (1952), 55–66

[18] E. N. Bereslavskii, “The construction of the constant-velocity contour of a foundation of a hydraulic installation in the case of the filtration of two liquids of different density”, J. of Applied Mathematics and Mechanics, 54:2 (1990), 285–289 | DOI | MR | MR | Zbl

[19] E. N. Bereslavskii, “Determination of the underground contour of a submerged apron with a region of constant velocity when there is a salt backwater”, J. of Applied Mathematics and Mechanics, 62:1 (1998), 163–168 | DOI | MR

[20] E. N. Bereslavskii, “The design of the iso-velocity contour for the flow past the base of a dam with a confining bed”, J. of Applied Mathematics and Mechanics, 73:4 (2009), 426–433 | DOI | MR | Zbl

[21] P. Ia. Polubarinova-Kochina, S. V. Falkovich, “Teoriia zhidkostei v poristykh sredakh”, Prikl. matem. i mekhanika, 11:6 (1947), 629–674 | MR

[22] V. A. Vasilev, “O forme bugra gruntovykh vod pri chastichnoi infiltratsii”, Prikl. matem. i mekhanika, 19:1 (1955), 106–108 | MR | Zbl

[23] P. Ia. Polubarinova-Kochina, “O linze presnoi vody nad solenoi vodoi”, Prikl. matem. i mekhanika, 20:3 (1956), 418–420 | Zbl

[24] V. N. Emikh, “Filtratsiia s polosy pri nalichii solenykh podpornykh vod”, Prikl. mekhanika i tekhn. fizika, 1962, no. 2, 145–149

[25] V. N. Emikh, “K zadache o linze presnoi vody pri filtratsii iz kanala”, Tr. Tashk. un-ta, 1964, no. 265, 32–38

[26] V. N. Emikh, “Shape of the fresh-water lens resulting from canal seepage”, Fluid Dynamics, 1:2 (1966), 76–79 | DOI

[27] P. Ia. Polubarinova-Kochina, V. G. Priazhinskaia, V. N. Emikh, Matematicheskie metody v voprosakh orosheniia, Nauka, M., 1969

[28] Iu. I. Kapranov, “The form of fresh-water lens for linear evaporation law”, Journal of Applied Mathematics and Mechanics, 37:3 (1966), 475–482 | DOI | MR | MR

[29] Iu. I. Kapranov, “Fresh water lens produced by uniform infiltration”, J. of Applied Mathematics and Mechanics, 38:6 (1974), 994–1001 | DOI | MR | Zbl

[30] E. N. Bereslavskii, “The intake of purified fresh water with filtration from a reservoir”, J. of Applied Mathematics and Mechanics, 54:5 (1990), 714–718 | DOI

[31] E. N. Bereslavskii, “O vliianii nepronitsaemogo vkliucheniia v oroshaemom pochvennom sloe na filtratsiiu iz kanala”, Izv.AN SSSR. Mekhanika zhidkosti i gaza, 1990, no. 5, 71–76 | MR

[32] S. N. Numerov, L. A. Panasenko, “K voprosu o filtratsii gruntovykh vod pri nalichii sistematicheskogo drenazha”, Prikl. matem., Mezhvuz. temat. sb. nauch. tr., L., 1977, 111–139 | Zbl

[33] S. N. Numerov, L. A. Panasenko, “Ob odnom sluchae filtratsii gruntovykh vod pri nalichii otkrytogo sistematicheskogo drenazha”, Chislennye metody v gidromekhanike, Mezhvuzovsk. temat. sb. nauch. trudov, L., 1981, 43–53 | MR

[34] V. N. Emikh, “Reshenie zadachi o ploskoi beznapornoi filtratsii pri drenazhnykh promyvkakh s nepronitsaemym osnovaniem”, Dokl. AN SSSR, 220:6 (1975), 1289–1292 | Zbl

[35] V. N. Emikh, “Plane pressureless filtration with drainage washing operations of a soil layer of infinite thickness”, Fluid Dynamics, 10:4 (1975), 584–589 | DOI

[36] V. N. Emikh, Gidrodinamika filtratsionnykh techenii s drenazhem, Nauka, Novosibirsk, 1993

[37] E. N. Bereslavskii, “Reshenie odnoi zadachi filtratsii s neodnolistnoi oblastiu kompleksnoi skorosti”, Izv. vuzov. Matematika, 1985, no. 2, 74–76

[38] Iu. I. Kapranov, “O kaime presnykh vod v sluchae periodicheskoi sistemy gorizontalnykh trubchatykh dren”, Kraevye zadachi podzemnoi gidrodinamiki, Izd-vo In-ta matem. AN SSSR, Kiev, 1975, 67–84 | MR

[39] V. N. Emikh, “Gidrodinamicheskaia model drenazha v kaime presnykh gruntovykh vod nad solenymi”, Dokl. AN SSSR, 252:4 (1980), 825–828

[40] E. N. Bereslavskii, V. N. Emikh, “Problem of filtration from a system of channels at the border zone separating fresh waters from saline waters lying below, with evaporation”, J. of Applied Mathematics and Mechanics, 47:3 (1983), 376–382 | DOI | MR

[41] E. N. Bereslavskii, V. N. Emikh, “On the critical filtration mode with evaporation at the border zone separating fresh waters from saline waters below”, J. of Applied Mathematics and Mechanics, 52:5 (1988), 680–683 | DOI

[42] E. N. Bereslavskii, “Reshenie odnoi zadachi filtratsii zhidkostei raznoi plotnosti metodom konformnogo otobrazheniia krugovykh mnogougolnikov”, Izv. vuzov. Matematika, 1984, no. 2, 56–58

[43] E. N. Bereslavskii, L. A. Aleksandrova, E. V. Pesterev, “Matematicheskoe modelirovanie nekotorykh filtratsionnykh techenii pod gidrotekhnicheskimi sooruzheniiami”, Matem. modelirovanie, 22:6 (2010), 27–37

[44] E. N. Bereslavskii, L. A. Aleksandrova, E. V. Pesterev, “On ground water seepage under hydraulic structures”, Mathematical Models and Computer Simulations, 3:5 (2011), 619–628 | DOI | MR | MR

[45] E. N. Bereslavskii, “Modeling flow around the Joukowski tongue”, Doklady physics, 56:9 (2011), 489–493 | DOI | MR

[46] E. N. Bereslavskii, “A way to calculation of seepage attached to the flow round the Zhukovsky rabbet with more than one-sheeted area of complex velocity”, Mathematical Models and Comp. Simulations, 23:9 (2011), 3–13

[47] E. N. Bereslavskii, “The flow of ground waters around a Zhukovskii sheet pile”, Journal of Applied Mathematics and Mechanics, 75:2 (2011), 210–217 | DOI | MR

[48] E. N. Bereslavskii, “Some mathematical models related to the Zhukovskii problem of the flow around a sheet pile”, J. of Applied Mathematics and Mechanics, 78:3 (2014), 275–286 | DOI | MR

[49] E. N. Bereslavskii, E. V. Pesterev, “O nekotorykh modeliakh techeniia zhidkosti iz stroitelnykh kotlovanov”, Matematicheskoe modelirovanie, 26:12 (2014), 81–96