Numerical methods with adaptive artificial viscosity for solving of the Navier--Stokes equations
Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 122-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new numerical method for solving of two-dimensional problems of viscous compressible gas on the base of the Navier–Stokes equations is supposed in the paper. The method is implemented for areas of general view on triangular meshes. The method of adaptive artificial viscosity is used as base of the proposed numerical method and provides the monotony of solutions, even if there are shock waves. An artificial viscosity, introduced in the differential scheme, is constructed in this way that it is not in the boundary layer, where there is a dynamic viscosity. The viscosity is determined from the conditions of the maximum principle. The series of calculations of external flow around a cylinder for different Reynolds and Mach numbers is represented.
Keywords: numerical method, finite difference scheme, Navier–Stokes equations, adaptive artificial viscosity.
@article{MM_2016_28_12_a9,
     author = {I. V. Popov},
     title = {Numerical methods with adaptive artificial viscosity for solving of the {Navier--Stokes} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {122--132},
     publisher = {mathdoc},
     volume = {28},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a9/}
}
TY  - JOUR
AU  - I. V. Popov
TI  - Numerical methods with adaptive artificial viscosity for solving of the Navier--Stokes equations
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 122
EP  - 132
VL  - 28
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_12_a9/
LA  - ru
ID  - MM_2016_28_12_a9
ER  - 
%0 Journal Article
%A I. V. Popov
%T Numerical methods with adaptive artificial viscosity for solving of the Navier--Stokes equations
%J Matematičeskoe modelirovanie
%D 2016
%P 122-132
%V 28
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_12_a9/
%G ru
%F MM_2016_28_12_a9
I. V. Popov. Numerical methods with adaptive artificial viscosity for solving of the Navier--Stokes equations. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 122-132. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a9/

[1] I.V. Popov, I.V. Friazinov, Metod adaptivnoi iskusstvennoi viazkosti chislennogo resheniia uravnenii gazovoi dinamiki, KRASAND, M., 2015, 288 pp.

[2] E.V. Shilnikov, “Modelirovanie techenii viazkogo gaza na osnove KGD sistemy uravnenii na neortogonalnykh indeksnykh setkakh”, Preprint IPM im. M.V. Keldysha RAN, 2014, 033, 20 pp.

[3] Iu.V. Sheretov, Matematicheskoe modelirovanie techenii zhidkosti i gaza na osnove kvazigidrodinamicheskikh i kvazigazodinamicheskikh uravnenii, Tverskoi Gos. Un-t, Tver, 2000, 400 pp.

[4] I.A. Shirokov, T.G. Elizarova, “Priamoe chislennoe modelirovanie laminarno-turbulentnogo perekhoda v sloe viazkogo szhimaemogo gaza”, Prikladnaia matematika i informatika, 2013, no. 42, 30–53

[5] A.N. Liubimov, V.V. Rusanov, Techenie gaza okolo tupykh tel, v. II, Tablitsy gazodinamicheskikh funktsii, Nauka, M., 1970, 379 pp.

[6] B.N. Chetverushkin, Kineticheskie skhemy i kvazigazodinamicheskaia sistema uravnenii, Maks Press, M., 2004, 328 pp.

[7] L.D. Landau, E.M. Lifshitz, Course of Theoretical Physics, v. 6, Fluid mechanics, 2nd ed., Pergamon Press, 1987, XIV+539 pp. | MR | Zbl

[8] E.V. Bruiatskii, A.G. Kostin, E.I. Nikiforovich, N.V. Rozumniuk, “Metod chislennogo resheniia uravnenii Nave–Stoksa v peremennykh skorost-davlenie”, Prikladnaia gidromekhanika, 10:2 (2008), 13–23