Kinetic melting and crystallization stages of strongly superheated and supercooled metals
Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 83-94.

Voir la notice de l'article provenant de la source Math-Net.Ru

Within the framework of the molecular dynamics approach was carried out modeling of heterogeneous melting/crystallization of metals with different crystallographic lattices under conditions where the phase front propagates on overheated/supercooled media. To obtain the temperature dependence of the kinetic velocity in analytical form results of atomistic modeling were approximated by function obtained from the kinetic representations. For the first time were built stationary temperature dependences of kinetic velocity $v(T_{sl})$ for limit values of overheated/supercooling of copper and iron.
Keywords: atomistic modeling, kinetic velocity, overheated/supercooled states, melting-crystallization, molecular dynamics.
@article{MM_2016_28_12_a6,
     author = {V. I. Mazhukin and A. V. Shapranov and V. E. Perezhigin and O. N. Koroleva and A. V. Mazhukin},
     title = {Kinetic melting and crystallization stages of strongly superheated and supercooled metals},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {83--94},
     publisher = {mathdoc},
     volume = {28},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/}
}
TY  - JOUR
AU  - V. I. Mazhukin
AU  - A. V. Shapranov
AU  - V. E. Perezhigin
AU  - O. N. Koroleva
AU  - A. V. Mazhukin
TI  - Kinetic melting and crystallization stages of strongly superheated and supercooled metals
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 83
EP  - 94
VL  - 28
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/
LA  - ru
ID  - MM_2016_28_12_a6
ER  - 
%0 Journal Article
%A V. I. Mazhukin
%A A. V. Shapranov
%A V. E. Perezhigin
%A O. N. Koroleva
%A A. V. Mazhukin
%T Kinetic melting and crystallization stages of strongly superheated and supercooled metals
%J Matematičeskoe modelirovanie
%D 2016
%P 83-94
%V 28
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/
%G ru
%F MM_2016_28_12_a6
V. I. Mazhukin; A. V. Shapranov; V. E. Perezhigin; O. N. Koroleva; A. V. Mazhukin. Kinetic melting and crystallization stages of strongly superheated and supercooled metals. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 83-94. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/

[1] V. A. Kirillin, V. V. Sychev, A. E. Sheindlin, Tekhnicheskaia termodinamika, 5 izd., Energoatomizdat, M., 1983, 416 pp.

[2] V. I. Mazhukin, A. A. Samarskii, “Mathematical Modeling in the Technology of Laser Treatments of Materials”, Review. Surv. Math. Industry, 4:2 (1994), 85–149 | MR | Zbl

[3] J. W. Christian, The theory of transformations in metals and alloys: an advanced textbook in physical metallurgy, Pergamon Press, Oxford, 1965, 975 pp.

[4] K. A. Jackson, Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, 2004, 409 pp. | Zbl

[5] V. I. Mazhukin, “Kinetics and Dynamics of Phase Transformations in Metals Under Action of Ultra-Short High-Power Laser Pulses”, Laser Pulses — Theory, Technology, and Applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 544 pp.

[6] J. Stefan, “Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere”, Ann. Physik Chemie, 42 (1891), 269–286 | DOI | MR

[7] G. Lame, B. P. Clapeyron, “Memoire sur la solidification par refroidissement d'un globe liquide”, Ann. Chimie Physique, 47 (1831), 250–256

[8] B. Chalmers, Principles of Solidification, John Wiley Sons, N.-Y., 1964, 129 pp.

[9] S. R. Coriell, D. Turnbull, “Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts”, Acta Metallurgica, 30:12 (1982), 2135–2139 | DOI

[10] M. Amini, B. B. Laird, “Kinetic Coefficient for Hard-Sphere Crystal Growth from the Melt”, Physical Review Letters, 97 (2006), 216102-1–216102-4 | DOI

[11] M. I. Mendelev, M. J. Rahman, J. J. Hoyt, M. Asta, “Molecular-dynamics study of solid-liquid interface migration in fcc metals”, Modeling Simul. Mater. Sci. Eng., 18 (2010), 074002, 18 pp. | DOI

[12] K. A. Jackson, “The interface kinetics of crystal growth processes”, Interface Science, 10 (2002), 159–169 | DOI

[13] J. J. Hoyt, M. Asta, A. Karma, “Atomistic Simulation Methods for Computing the Kinetic Coefficient in Solid-Liquid Systems”, Interface Science, 10:2–3 (2002), 181–189 | DOI

[14] M. E. Glicksman, R. J. Schaefer, “Investigation of solid/liquid interface temperatures via isenthalpic solidification”, J. Crystal Growth, 1:5 (1967), 297–310 | DOI

[15] G. H. Rodway, J. D. Hunt, “Thermoelectric investigation of solidification of lead. I. Pure lead”, J. Cryst. Growth, 112:2–3 (1991), 554–562 | DOI

[16] H. A. Wilson, “On the velocity of solidification and viscosity of supercooled liquids”, Philos. Mag., 50 (1900), 238–250 | DOI | Zbl

[17] Ja. I. Frenkel, “Note on the relation between the speed of crystallization and viscosity”, Phys. Z. Sowjet Union, 1 (1932), 498–499

[18] K. A. Jackson, B. Chalmers, “Kinetics of solidification”, Can. J. Phys., 34 (1956), 473–490 | DOI

[19] J. Frenkel, Kinetic Theory of Solids, Oxford University Press, N.-Y., 1946, 500 pp. | MR

[20] J. Q. Broughton, G. H. Gilmer, K. A. Jackson, “Crystallization Rates of a Lennard–Jones Liquid”, Phys. Rev. Let., 49 (1982), 1496–1500 | DOI

[21] D. Turnbull, “On the relation between crystallization rate and liquid structure”, J. Phys. Chem., 62:4 (1962), 609–613 | DOI

[22] D. Turnbull, B. G. Bagley, Treatise on solid state chemistry, v. 5, ed. N. G. Hannay, Plenum, New York, 1975, 526 pp.

[23] M. D. Kluge, J. R. Ray, “Velocity versus temperature relation for solidification and melting of silicon: A molecular-dynamics study”, Phys. Rev. B, 39:3 (1989), 1738–1746 | DOI

[24] F. H. Stillinger, T. A. Weber, “Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B, 31:8 (1985), 5262–5271 | DOI

[25] J. E. Jones, “On the Determination of Molecular Fields”, Proc. R. Soc. Lond., A 106:738 (1924), 463–477 | DOI

[26] C. J. Tymczak, J. R. Ray, “Asymmetric Crystallization and Melting Kinetics in Sodium: A Molecular-Dynamics Study”, Phys. Rev. Let., 64:11 (1990), 1278–1281 | DOI

[27] J. J. Hoyt, M. Asta, A. Karma, “Atomistic and continuum modeling of dendritic solidification”, Materials Science and Engineering R, 41 (2003), 121–163 | DOI

[28] Y. Ashkenazy, R. S. Averback, “Kinetic stages in the crystallization of deeply undercooled bodycentered-cubic and face-centered-cubic metals”, Acta Materialia, 58 (2010), 524–530 | DOI

[29] D. Buta, M. Asta, J. J. Hoyt, “Kinetic coefficient of steps at the Si (111) crystal-melt interface from molecular dynamics simulations”, J. Chem. Phys., 127 (2007), 074703, 11 pp. | DOI

[30] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, “Matematicheskoe modelirovanie teplofizicheskikh svoistv, protcessov nagreva i plavleniia metallov metodom molekuliarnoi dinamiki”, Mathematica Montisnigri, XXIV (2012), 47–66

[31] J. Monk, Y. Yang, M. I. Mendelev, M. Asta, J. J. Hoyt, D. Y. Sun, “Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations”, Model. Simul. Mater. Sci. Eng., 18 (2010), 015004, 18 pp. | DOI

[32] V. I. Mazhukin, A. A. Samokhin, A. V. Shapranov, M. M. Demin, “Modeling of thin film explosive boiling-surface evaporation and electron thermal conductivity effect”, Mater. Res. Express, 2:1 (2015), 016402, 9 pp. | DOI

[33] Yu. Kuksin, G. E. Norman, V. V. Pisarev, V. V. Stegailov, A. V. Yanilkin, “Theory and molecular dynamics modeling of spall fracture in liquids”, Phys. Rev. B, 82:17 (2010), 174101 | DOI

[34] A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, H. M. Urbassek, “Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold”, Phys. Rev. B, 78 (2008), 045437-1–045437-10 | DOI

[35] V. I. Mazhukin, M. M. Demin, A. V. Shapranov, “High-speed laser ablation of metal with pico- and subpicosecond pulses”, Applied Surface Science, 302 (2014), 6–10 | DOI

[36] A. A. Samokhin, “First-order phase transitions induced by laser radiation in absorbing condensed matter”, Proceedings of the Institute of General Physics Academy of Science of the USSR, 13 (1990), 1–161

[37] K. Nordlund, R. S. Averback, “Role of Self-Interstitial Atoms on the High Temperature Properties of Metals”, Phys. Rev. Let., 80:19 (1998), 4201–4204 | DOI

[38] S. M. Foiles, M. I. Baskes, M. S. Daw, “Embedded-atom method functions for fss metals Cu, Ag, Au, Ni, Pd, Pt”, Phys. Rev. B, 33 (1986), 7983–7991 | DOI

[39] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta, “Development of new interatomic potentials appropriate for crystalline and liquid iron”, Philosophical Magazine, 83:35 (2003), 3977–3994 | DOI

[40] G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev, “Development of an interatomic potential for phosphorus impurities in $\alpha$-iron”, J. Phys. Condens. Matter, 16 (2004), 2629–2642 | DOI