Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_12_a6, author = {V. I. Mazhukin and A. V. Shapranov and V. E. Perezhigin and O. N. Koroleva and A. V. Mazhukin}, title = {Kinetic melting and crystallization stages of strongly superheated and supercooled metals}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {83--94}, publisher = {mathdoc}, volume = {28}, number = {12}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/} }
TY - JOUR AU - V. I. Mazhukin AU - A. V. Shapranov AU - V. E. Perezhigin AU - O. N. Koroleva AU - A. V. Mazhukin TI - Kinetic melting and crystallization stages of strongly superheated and supercooled metals JO - Matematičeskoe modelirovanie PY - 2016 SP - 83 EP - 94 VL - 28 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/ LA - ru ID - MM_2016_28_12_a6 ER -
%0 Journal Article %A V. I. Mazhukin %A A. V. Shapranov %A V. E. Perezhigin %A O. N. Koroleva %A A. V. Mazhukin %T Kinetic melting and crystallization stages of strongly superheated and supercooled metals %J Matematičeskoe modelirovanie %D 2016 %P 83-94 %V 28 %N 12 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/ %G ru %F MM_2016_28_12_a6
V. I. Mazhukin; A. V. Shapranov; V. E. Perezhigin; O. N. Koroleva; A. V. Mazhukin. Kinetic melting and crystallization stages of strongly superheated and supercooled metals. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 83-94. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a6/
[1] V. A. Kirillin, V. V. Sychev, A. E. Sheindlin, Tekhnicheskaia termodinamika, 5 izd., Energoatomizdat, M., 1983, 416 pp.
[2] V. I. Mazhukin, A. A. Samarskii, “Mathematical Modeling in the Technology of Laser Treatments of Materials”, Review. Surv. Math. Industry, 4:2 (1994), 85–149 | MR | Zbl
[3] J. W. Christian, The theory of transformations in metals and alloys: an advanced textbook in physical metallurgy, Pergamon Press, Oxford, 1965, 975 pp.
[4] K. A. Jackson, Kinetic Processes: Crystal Growth, Diffusion, and Phase Transitions in Materials, Wiley-VCH Verlag GmbH Co. KGaA, Weinheim, 2004, 409 pp. | Zbl
[5] V. I. Mazhukin, “Kinetics and Dynamics of Phase Transformations in Metals Under Action of Ultra-Short High-Power Laser Pulses”, Laser Pulses — Theory, Technology, and Applications, Chapter 8, ed. I. Peshko, InTech, Croatia, 2012, 544 pp.
[6] J. Stefan, “Über die Theorie der Eisbildung, insbesondere über die Eisbildung im Polarmeere”, Ann. Physik Chemie, 42 (1891), 269–286 | DOI | MR
[7] G. Lame, B. P. Clapeyron, “Memoire sur la solidification par refroidissement d'un globe liquide”, Ann. Chimie Physique, 47 (1831), 250–256
[8] B. Chalmers, Principles of Solidification, John Wiley Sons, N.-Y., 1964, 129 pp.
[9] S. R. Coriell, D. Turnbull, “Relative roles of heat transport and interface rearrangement rates in the rapid growth of crystals in undercooled melts”, Acta Metallurgica, 30:12 (1982), 2135–2139 | DOI
[10] M. Amini, B. B. Laird, “Kinetic Coefficient for Hard-Sphere Crystal Growth from the Melt”, Physical Review Letters, 97 (2006), 216102-1–216102-4 | DOI
[11] M. I. Mendelev, M. J. Rahman, J. J. Hoyt, M. Asta, “Molecular-dynamics study of solid-liquid interface migration in fcc metals”, Modeling Simul. Mater. Sci. Eng., 18 (2010), 074002, 18 pp. | DOI
[12] K. A. Jackson, “The interface kinetics of crystal growth processes”, Interface Science, 10 (2002), 159–169 | DOI
[13] J. J. Hoyt, M. Asta, A. Karma, “Atomistic Simulation Methods for Computing the Kinetic Coefficient in Solid-Liquid Systems”, Interface Science, 10:2–3 (2002), 181–189 | DOI
[14] M. E. Glicksman, R. J. Schaefer, “Investigation of solid/liquid interface temperatures via isenthalpic solidification”, J. Crystal Growth, 1:5 (1967), 297–310 | DOI
[15] G. H. Rodway, J. D. Hunt, “Thermoelectric investigation of solidification of lead. I. Pure lead”, J. Cryst. Growth, 112:2–3 (1991), 554–562 | DOI
[16] H. A. Wilson, “On the velocity of solidification and viscosity of supercooled liquids”, Philos. Mag., 50 (1900), 238–250 | DOI | Zbl
[17] Ja. I. Frenkel, “Note on the relation between the speed of crystallization and viscosity”, Phys. Z. Sowjet Union, 1 (1932), 498–499
[18] K. A. Jackson, B. Chalmers, “Kinetics of solidification”, Can. J. Phys., 34 (1956), 473–490 | DOI
[19] J. Frenkel, Kinetic Theory of Solids, Oxford University Press, N.-Y., 1946, 500 pp. | MR
[20] J. Q. Broughton, G. H. Gilmer, K. A. Jackson, “Crystallization Rates of a Lennard–Jones Liquid”, Phys. Rev. Let., 49 (1982), 1496–1500 | DOI
[21] D. Turnbull, “On the relation between crystallization rate and liquid structure”, J. Phys. Chem., 62:4 (1962), 609–613 | DOI
[22] D. Turnbull, B. G. Bagley, Treatise on solid state chemistry, v. 5, ed. N. G. Hannay, Plenum, New York, 1975, 526 pp.
[23] M. D. Kluge, J. R. Ray, “Velocity versus temperature relation for solidification and melting of silicon: A molecular-dynamics study”, Phys. Rev. B, 39:3 (1989), 1738–1746 | DOI
[24] F. H. Stillinger, T. A. Weber, “Computer simulation of local order in condensed phases of silicon”, Phys. Rev. B, 31:8 (1985), 5262–5271 | DOI
[25] J. E. Jones, “On the Determination of Molecular Fields”, Proc. R. Soc. Lond., A 106:738 (1924), 463–477 | DOI
[26] C. J. Tymczak, J. R. Ray, “Asymmetric Crystallization and Melting Kinetics in Sodium: A Molecular-Dynamics Study”, Phys. Rev. Let., 64:11 (1990), 1278–1281 | DOI
[27] J. J. Hoyt, M. Asta, A. Karma, “Atomistic and continuum modeling of dendritic solidification”, Materials Science and Engineering R, 41 (2003), 121–163 | DOI
[28] Y. Ashkenazy, R. S. Averback, “Kinetic stages in the crystallization of deeply undercooled bodycentered-cubic and face-centered-cubic metals”, Acta Materialia, 58 (2010), 524–530 | DOI
[29] D. Buta, M. Asta, J. J. Hoyt, “Kinetic coefficient of steps at the Si (111) crystal-melt interface from molecular dynamics simulations”, J. Chem. Phys., 127 (2007), 074703, 11 pp. | DOI
[30] V. I. Mazhukin, A. V. Shapranov, V. E. Perezhigin, “Matematicheskoe modelirovanie teplofizicheskikh svoistv, protcessov nagreva i plavleniia metallov metodom molekuliarnoi dinamiki”, Mathematica Montisnigri, XXIV (2012), 47–66
[31] J. Monk, Y. Yang, M. I. Mendelev, M. Asta, J. J. Hoyt, D. Y. Sun, “Determination of the crystal-melt interface kinetic coefficient from molecular dynamics simulations”, Model. Simul. Mater. Sci. Eng., 18 (2010), 015004, 18 pp. | DOI
[32] V. I. Mazhukin, A. A. Samokhin, A. V. Shapranov, M. M. Demin, “Modeling of thin film explosive boiling-surface evaporation and electron thermal conductivity effect”, Mater. Res. Express, 2:1 (2015), 016402, 9 pp. | DOI
[33] Yu. Kuksin, G. E. Norman, V. V. Pisarev, V. V. Stegailov, A. V. Yanilkin, “Theory and molecular dynamics modeling of spall fracture in liquids”, Phys. Rev. B, 82:17 (2010), 174101 | DOI
[34] A. K. Upadhyay, N. A. Inogamov, B. Rethfeld, H. M. Urbassek, “Ablation by ultrashort laser pulses: Atomistic and thermodynamic analysis of the processes at the ablation threshold”, Phys. Rev. B, 78 (2008), 045437-1–045437-10 | DOI
[35] V. I. Mazhukin, M. M. Demin, A. V. Shapranov, “High-speed laser ablation of metal with pico- and subpicosecond pulses”, Applied Surface Science, 302 (2014), 6–10 | DOI
[36] A. A. Samokhin, “First-order phase transitions induced by laser radiation in absorbing condensed matter”, Proceedings of the Institute of General Physics Academy of Science of the USSR, 13 (1990), 1–161
[37] K. Nordlund, R. S. Averback, “Role of Self-Interstitial Atoms on the High Temperature Properties of Metals”, Phys. Rev. Let., 80:19 (1998), 4201–4204 | DOI
[38] S. M. Foiles, M. I. Baskes, M. S. Daw, “Embedded-atom method functions for fss metals Cu, Ag, Au, Ni, Pd, Pt”, Phys. Rev. B, 33 (1986), 7983–7991 | DOI
[39] M. I. Mendelev, S. Han, D. J. Srolovitz, G. J. Ackland, D. Y. Sun, M. Asta, “Development of new interatomic potentials appropriate for crystalline and liquid iron”, Philosophical Magazine, 83:35 (2003), 3977–3994 | DOI
[40] G. J. Ackland, M. I. Mendelev, D. J. Srolovitz, S. Han, A. V. Barashev, “Development of an interatomic potential for phosphorus impurities in $\alpha$-iron”, J. Phys. Condens. Matter, 16 (2004), 2629–2642 | DOI