Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_12_a5, author = {L. V. Nadkrinichnyi}, title = {Generation of waves by a shock wave sliding along the shallow water surface}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {74--82}, publisher = {mathdoc}, volume = {28}, number = {12}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a5/} }
L. V. Nadkrinichnyi. Generation of waves by a shock wave sliding along the shallow water surface. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 74-82. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a5/
[1] L.I. Sedov, Similarity and Dimensional Methods in Mechanics, 10th Edition, CRC Press, Boca Raton, 1993, 496 pp.
[2] B.E. Gelfand, M.V. Silnikov, Gazovye vzryvy, Asterion, Spb., 2007, 240 pp.
[3] B.E. Gelfand, M.V. Silnikov, Fugasnoe deistvie vzryvov, Asterion, Spb., 2007, 252 pp.
[4] S. Morioka, G. Matsui, “Propagation of a Disturbance through a Separated Gas-Liquid System”, Journal of The Physical Society of Japan, 35:4 (1973), 1218–1224 | DOI | MR
[5] T. Koshinaka, S. Morioka, “Pressure Waves in a Separated Gas-Liquid Layer in a Horizontal Duct with a Step”, Fluid Dynamics Research, 12 (1993), 323–333 | DOI
[6] J. Pedlosky, Geophysical Fluid Dynamics, Second Edition, Springer-Verlag, NY, 1987, 710 pp. | Zbl
[7] L.V. Nadkrinichnyi, “Numerical Study of the Generation and Propagation of Tsunami Waves Caused by a Running Bottom Rift”, Mathematical Models and Computer Simulations, 6:3 (2014), 262–271 | DOI | MR
[8] A. Teodorczyk, J. E. Shepherd, Interaction of a Shock Wave with a Water Layer, Explosion Dynamics Laboratory Report FM2012.002, California Institute of Technology, Pasadena, 2012, 45 pp.
[9] G. Korn, T. Korn, Mathematical Handbook for Scientists and Engineers: Definitions, Theorems, and Formulas for Reference and Review, Dover Civil and Mechanical Engineering, Dover Publications, NY, 2000, 1152 pp. | MR