Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_12_a2, author = {Igor Menshov}, title = {Exact and approximate {Riemann} solvers for compressible two-phase flows}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {33--55}, publisher = {mathdoc}, volume = {28}, number = {12}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a2/} }
Igor Menshov. Exact and approximate Riemann solvers for compressible two-phase flows. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 33-55. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a2/
[1] R. I. Nigmatulin, Dinamika mnogofaznykh sred, v. 1, Nauka, M., 1987, 464 pp.
[2] S. Clain, D. Rochette, “First- and second-order finite volume methods for the one-dimensional nonconservative Euler system”, J. Comp. Phys., 228 (2009), 8214–8248 | DOI | MR | Zbl
[3] N. Andrianov, G. Warnecke, “The Riemann problem for the Baer-Nunziato two-phase flow model”, J. Comput. Phys., 195 (2004), 434–464 | DOI | MR | Zbl
[4] M.E. Vazquez-Cendon, “Improved treatment of source terms in upwind schemes for the shallow-water equations in channels with irregular geometry”, J. Comp. Phys., 148 (1999), 497–525 | DOI | MR
[5] R. Saurel, R. Abgrall, “A multiphase Godunov method for compressible multifluid and multiphase flows”, J. Comput. Phys., 150 (1999), 425–467 | DOI | MR | Zbl
[6] N. Andrianov, G. Warnecke, “On the solution to the Riemann problem for the compressible duct flow”, SIAM J. Appl. Math., 64:3 (2004), 878–901 | DOI | MR | Zbl
[7] G. Dal Maso, P. G. Le Floch, F. Murat, “Definition and weak stability of a non-conservative product”, J. Math. Pures. Appl., 74:6 (1995), 483–548 | MR | Zbl
[8] L. Gosse, “A well-balanced flux-vector splitting scheme designed for hyperbolic system of conservation laws with source terms”, Comput. Math. Appl., 39 (2000), 135–159 | DOI | MR | Zbl
[9] V. V. Rusanov, “Raschet vzaimodeistviia nestatsionarnykh udarnykh voln c prepiatstviiami”, Zh. vychisl. matem. i matem. fiz., 1:2 (1961), 267–279
[10] R. Abgrall, R. Saurel, “Discrete equations for physical and numerical compressible multiphase mixtures”, J. Comput. Phys., 186 (2003), 361–396 | DOI | MR | Zbl
[11] J. M. Greenberg, A. Y. Leroux, “A well-balanced scheme for the numerical processing of source terms in hyperbolic equations”, SIAM J. Numer. Anal., 3:1 (1996), 1–16 | DOI | MR
[12] A. Bermudez, M. E. Vazquez, “Upwind methods for hyperbolic conservation laws with source term”, Comput. Fluid, 23 (1994), 1049–1071 | DOI | MR | Zbl
[13] C. Pares, M. Castro, “On the well-balance property of Roe's method for nonconservative hyperbolic systems. Applications to shallow-water systems”, ESAIM: Math. Model. Numer. Anal., 38:5 (2004), 821–852 | DOI | MR | Zbl
[14] D. W. Schwendeman, C. W. Wahle, A. K. Kapila, “The Riemann problem and high-resolution Godunov method for a model of compressible two-phase flow”, J. Comp. Phys., 212 (2006), 490–526 | DOI | MR | Zbl
[15] B. W. Asay, S. F. Son, J. B. Bdzil, “The role of gas permeation in convective burning”, Int. J. Multiphase Flow, 23:5 (1996), 923–952 | DOI
[16] S. A. Tokareva, E. F. Toro, “HLLC-type Riemann solver for the Baer–Nunziato equations of compressible two-phase flow”, J. Comp. Phys., 229 (2010), 3573–3604 | DOI | MR | Zbl
[17] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47:3 (1959), 271–306 | Zbl
[18] J. Bell, P. Colella, J. Trangenstein, “Higher Order Godunov Methods for General Systems of Hyperbolic Conservation Laws”, J. Comput. Phys., 82 (1989), 362–397 | DOI | MR | Zbl
[19] A. V. Rodionov, “Monotonnaya skhema vtorogo poryadka approksimatsii dlya marshevykh raschetov neravnovesnykh potokov”, ZhVMiMF, 27:4 (1987), 585–593 | Zbl
[20] I. Menshov, A. Serezhkin, “Modeling Non-Equilibrium Two-Phase Flow in Elastic-Plastic Porous Solids”, Proceedings IACM-ECCOMAS 2014, Electronic book, 2014, 1–12
[21] T. Gallouët, J. M. Hérard, N. Seguin, “Some approximate Godunov schemes to compute shallowwater equations with topography”, Computers Fluids, 32:4 (2003), 479–513 | DOI | MR | Zbl
[22] S. K. Godunov, A. V. Zabrodin, M. Ia. Ivanov, A. N. Kraiko, G. P. Prokopov, Chislennoe reshenie mnogomernykh zadach gazovoi dinamiki, Nauka, M., 1976, 400 pp. | MR
[23] J. Dukowicz, “A General, Non-Iterative Riemann Solver for Godunov's Method”, J. Comput. Phys., 61 (1985), 119–137 | DOI | MR | Zbl