Numerical simulation of forest fire spread based on modifired 2D model
Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 20-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

A modified two-dimensional two-phase mathematical model of forest fires spread is considered. The model is based on the averaging of three-dimensional equations of two-phase medium over the height of the forest fuel (FF) layer, it includes the $(k-\varepsilon)$ turbulence model with additional turbulence production and dissipation terms in the forest layer and the Eddy Break-up Model for the combustion rate in the gas phase. The model elaborated can serve to carry out numerical simulation of the forest fire front propagation in conditions of non-homogeneous forest fuel distribution, obstacles to the fire spread and the effects of wind. This model can be used for computation of the fire propagation in real time, for expert assessments of emergency situations and assess the damage caused by forest fires.
Keywords: forest fires, modified two-dimension mathematical model, numerical simulation.
@article{MM_2016_28_12_a1,
     author = {A. A. Kuleshov and E. E. Myshetskaya and S. E. Yakush},
     title = {Numerical simulation of forest fire spread based on modifired {2D} model},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {20--32},
     publisher = {mathdoc},
     volume = {28},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a1/}
}
TY  - JOUR
AU  - A. A. Kuleshov
AU  - E. E. Myshetskaya
AU  - S. E. Yakush
TI  - Numerical simulation of forest fire spread based on modifired 2D model
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 20
EP  - 32
VL  - 28
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_12_a1/
LA  - ru
ID  - MM_2016_28_12_a1
ER  - 
%0 Journal Article
%A A. A. Kuleshov
%A E. E. Myshetskaya
%A S. E. Yakush
%T Numerical simulation of forest fire spread based on modifired 2D model
%J Matematičeskoe modelirovanie
%D 2016
%P 20-32
%V 28
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_12_a1/
%G ru
%F MM_2016_28_12_a1
A. A. Kuleshov; E. E. Myshetskaya; S. E. Yakush. Numerical simulation of forest fire spread based on modifired 2D model. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 20-32. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a1/

[1] W. E. Mell, R. J. McDermott, G. P. Forney, “Wildland fire behavior modeling: perspectives, new approaches and applications”, Proceedings of 3rd Fire Behavior and Fuels Conf. (October 25–29, 2010, Spokane, Washington, USA), Int. Association of Wildland Fire, Birmingham, Alabama, USA

[2] G. L. Achtemeier, “Field validation of a free-agent cellular automata model of fire spread with fire-atmosphere coupling”, International Journal of Wildland Fire, 22:2 (2013), 148–156 | DOI

[3] H. A. Perryman, C. J. Dugaw, J. Morgan Varner, D. L. Johnson, “A cellular automata model to link surface fires to firebrand lift-off and dispersal”, International Journal of Wildland Fire, 22:4 (2013), 428–439 | DOI

[4] M. E. Alexander, M. G. Cruz, “Evaluating a model for predicting active crown fire rate of spread using wildfire observations”, Canadian Journal of Forest Research, 36 (2006), 3015–3028 | DOI

[5] E. Alexander, M. G. Cruz, “Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height”, International Journal of Wildland Fire, 21:2 (2012), 95–113 | DOI | MR

[6] M. G. Cruz, M. E. Alexander, “Uncertainty associated with model predictions of surface and crown fire rates of spread”, Environmental Modelling Software, 47 (2013), 16–28 | DOI

[7] M. G. Cruz, J. S. Gould, M. E. Alexander, A. L. Sullivan, W. L. McCaw, S. Matthews, “Empirical-based models for predicting head-fire rate of spread in Australian fuel types”, Australian Forestry, 78 (2015), 118–158 | DOI

[8] T. L. Clark, J. Coen, D. Lathman, “Discription of a coupled atmospheric-fire model”, International Journal of Wildland Fire, 13:1 (2004), 49–63 | DOI

[9] J. L. Coen, Modeling wildland fires: A description of the coupled atmosphere - wildland fire environment model (CAWFE), NCAR Technical Notes, 2013

[10] R. C. Rothermel, A mathematical model for predicting fire spread in wildland fuels, USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115, Ogden, 1972

[11] P. L. Andrews, M. G. Cruz, R. C. Rothermel, “Examination of the wind speed limit function in the Rothermel surface fire spread model”, International Journal of Wildland Fire, 22:7 (2013), 959–969 | DOI

[12] J. B. Filippi, V. Mallet, B. Nader, “Evaluation of forest fire models on a large observation database”, Natural Hazards and Earth System Sciences, 14 (2014), 3077–3091 | DOI

[13] A. M. Grishin, Matematicheskoe modelirovanie lesnykh pozharov i novye sposoby borby s nimi, Nauka SO, Novosibirsk, 1992, 404 pp.

[14] W. Mell, M. A. Jenkins, J. Gould, P. Cheney, “A physics-based approach to modelling grassland fires”, International Journal of Wildland Fire, 16:1 (2007), 1–22 | DOI

[15] E. Mueller, W. Mell, A. Simeoni, “Large eddy simulation of forest canopy flow for wildland fire modeling”, Canadian Journal of Forest Research, 44 (2014), 1535–1545 | DOI

[16] C. M. Hoffman, J. Canfield, R. R. Linn, W. Mell, C. H. Sieg, F. Pimont, J. Ziegler, “Evaluating crown fire rate of spread predictions from physics-based models”, Fire Technology, 52:1, 1–17 (First online: 05 June 2015) | DOI | MR

[17] D. Morvan, J-L. Dupuy, “Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation”, Combustion and Flame, 138 (2004), 199–210 | DOI

[18] J-L. Dupuy, D. Morvan, “Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model”, International Journal of Wildland Fire, 14:2 (2005), 141–151 | DOI

[19] D. Morvan, “A numerical study of flame geometry and potential for crown fire initiation for a wildfire propagating through shrub fuel”, International Journal of Wildland Fire, 16:5 (2007), 511–518 | DOI

[20] G. Accary, O. Bessonov, D. Fougere, S. Meradji, D. Morvan, “Optimized parallel approach for 3D modelling of forest fire behavior”, Parallel Computing Technologies, 2007, 96–102 | DOI

[21] K. Gavrilov, G. Accary, D. Morvan, D. Lyubimov, S. Meradji, O. Bessonov, “Numerical simulation of coherent structures over plant canopy”, Flow, Turbulence and Combustion, 86:1 (2011), 89–111 | DOI | Zbl

[22] V. Perminov, “Mathematical modeling of crown forest fire spread”, Open Journal of Forestry, 2:1 (2012), 17–22 | DOI

[23] A. A. Kuleshov, “Matematicheskoe modeli lesnykh pozharov”, Mat. mod., 14:11 (2002), 33–42

[24] A. A. Kuleshov, E. E. Myshetskaia, “Matematicheskoe modelirovanie lesnykh pozharov s primeneniem mnogofaznykh modelei”, Mat. modelirovanie, 17:1 (2005), 34–42 | Zbl

[25] A. A. Kuleshov, E. E. Myshetskaya, “Mathematical simulation of forest fires using multiprocessor computers”, Mathematical Models and Computer Simulations, 1:4 (2009), 629–634 | DOI

[26] A. A. Kuleshov, E. E. Myshetskaya, “Numerical simulation of forest fires based on 2D model”, WSEAS Transactions on Heat and Mass Transfer, 6:4 (2011), 91–100

[27] A. A. Kuleshov, B. N. Chetverushkin, E. E. Myshetskaya, “Parallel computing in forest fire two-dimension modeling”, Computers and Fluids, 80 (2013), 202–206 | DOI | MR | Zbl

[28] Li Liang, Li Xiaofeng, L. Borong, Z. Yinghin, “Improved $(k-\varepsilon)$ two-equation turbulence model for canopy flow”, Atmospheric Environment, 40 (2006), 762–770 | DOI

[29] H. Hiraoka, M. Ohashi, “A $(k-\varepsilon)$ turbulence closure model for plant canopy flows”, J. of Wind Engineering and Industrial Aerodunamics, 96 (2008), 2139–2149 | DOI

[30] B. F. Magnussen, B. H. Hjertager, “On the mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion”, 16th Symp. (Int.) on Combustion (Pittsburgh, PA, The Combustion Inst., 1976), 711–729

[31] S. Galant, D. Grouset, G. Martinez, P. Micheau, J. B. Allemand, “Three-dimensional steady parabolic calculations of large-scale methane turbulent diffusion flames to predict flare radiation under crosswind conditions”, 20th Symp. (Int.) on Combustion (Pittsburgh, PA, The Combustion Institute, 1984), 531–540

[32] G. M. Makhviladze, J. P. Roberts, S. E. Yakush, “Combustion of two-phase hydrocarbon fuel clouds released into the atmosphere”, Combustion and Flame, 118 (1999), 583–605 | DOI

[33] G. M. Makhviladze, S. E. Yakush, “Modelling of formation and combustion of accidentally released fuel clouds. Hazards XVIII: Process safety — sharing best practice”, IChemE Symp. Series, 150 (2004), 270–282

[34] V. V. Kozoderov, E. V. Dmitriev, A. A. Sokolov, “Improved technique for retrieval offorest parameters from hyperspectral remote sensing data”, Optics Express, 23:24 (2015), A1342–A1353 | DOI