Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_12_a1, author = {A. A. Kuleshov and E. E. Myshetskaya and S. E. Yakush}, title = {Numerical simulation of forest fire spread based on modifired {2D} model}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {20--32}, publisher = {mathdoc}, volume = {28}, number = {12}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a1/} }
TY - JOUR AU - A. A. Kuleshov AU - E. E. Myshetskaya AU - S. E. Yakush TI - Numerical simulation of forest fire spread based on modifired 2D model JO - Matematičeskoe modelirovanie PY - 2016 SP - 20 EP - 32 VL - 28 IS - 12 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_12_a1/ LA - ru ID - MM_2016_28_12_a1 ER -
A. A. Kuleshov; E. E. Myshetskaya; S. E. Yakush. Numerical simulation of forest fire spread based on modifired 2D model. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 20-32. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a1/
[1] W. E. Mell, R. J. McDermott, G. P. Forney, “Wildland fire behavior modeling: perspectives, new approaches and applications”, Proceedings of 3rd Fire Behavior and Fuels Conf. (October 25–29, 2010, Spokane, Washington, USA), Int. Association of Wildland Fire, Birmingham, Alabama, USA
[2] G. L. Achtemeier, “Field validation of a free-agent cellular automata model of fire spread with fire-atmosphere coupling”, International Journal of Wildland Fire, 22:2 (2013), 148–156 | DOI
[3] H. A. Perryman, C. J. Dugaw, J. Morgan Varner, D. L. Johnson, “A cellular automata model to link surface fires to firebrand lift-off and dispersal”, International Journal of Wildland Fire, 22:4 (2013), 428–439 | DOI
[4] M. E. Alexander, M. G. Cruz, “Evaluating a model for predicting active crown fire rate of spread using wildfire observations”, Canadian Journal of Forest Research, 36 (2006), 3015–3028 | DOI
[5] E. Alexander, M. G. Cruz, “Interdependencies between flame length and fireline intensity in predicting crown fire initiation and crown scorch height”, International Journal of Wildland Fire, 21:2 (2012), 95–113 | DOI | MR
[6] M. G. Cruz, M. E. Alexander, “Uncertainty associated with model predictions of surface and crown fire rates of spread”, Environmental Modelling Software, 47 (2013), 16–28 | DOI
[7] M. G. Cruz, J. S. Gould, M. E. Alexander, A. L. Sullivan, W. L. McCaw, S. Matthews, “Empirical-based models for predicting head-fire rate of spread in Australian fuel types”, Australian Forestry, 78 (2015), 118–158 | DOI
[8] T. L. Clark, J. Coen, D. Lathman, “Discription of a coupled atmospheric-fire model”, International Journal of Wildland Fire, 13:1 (2004), 49–63 | DOI
[9] J. L. Coen, Modeling wildland fires: A description of the coupled atmosphere - wildland fire environment model (CAWFE), NCAR Technical Notes, 2013
[10] R. C. Rothermel, A mathematical model for predicting fire spread in wildland fuels, USDA Forest Service, Intermountain Forest and Range Experiment Station, Research Paper INT-115, Ogden, 1972
[11] P. L. Andrews, M. G. Cruz, R. C. Rothermel, “Examination of the wind speed limit function in the Rothermel surface fire spread model”, International Journal of Wildland Fire, 22:7 (2013), 959–969 | DOI
[12] J. B. Filippi, V. Mallet, B. Nader, “Evaluation of forest fire models on a large observation database”, Natural Hazards and Earth System Sciences, 14 (2014), 3077–3091 | DOI
[13] A. M. Grishin, Matematicheskoe modelirovanie lesnykh pozharov i novye sposoby borby s nimi, Nauka SO, Novosibirsk, 1992, 404 pp.
[14] W. Mell, M. A. Jenkins, J. Gould, P. Cheney, “A physics-based approach to modelling grassland fires”, International Journal of Wildland Fire, 16:1 (2007), 1–22 | DOI
[15] E. Mueller, W. Mell, A. Simeoni, “Large eddy simulation of forest canopy flow for wildland fire modeling”, Canadian Journal of Forest Research, 44 (2014), 1535–1545 | DOI
[16] C. M. Hoffman, J. Canfield, R. R. Linn, W. Mell, C. H. Sieg, F. Pimont, J. Ziegler, “Evaluating crown fire rate of spread predictions from physics-based models”, Fire Technology, 52:1, 1–17 (First online: 05 June 2015) | DOI | MR
[17] D. Morvan, J-L. Dupuy, “Modeling the propagation of a wildfire through a Mediterranean shrub using a multiphase formulation”, Combustion and Flame, 138 (2004), 199–210 | DOI
[18] J-L. Dupuy, D. Morvan, “Numerical study of a crown fire spreading toward a fuel break using a multiphase physical model”, International Journal of Wildland Fire, 14:2 (2005), 141–151 | DOI
[19] D. Morvan, “A numerical study of flame geometry and potential for crown fire initiation for a wildfire propagating through shrub fuel”, International Journal of Wildland Fire, 16:5 (2007), 511–518 | DOI
[20] G. Accary, O. Bessonov, D. Fougere, S. Meradji, D. Morvan, “Optimized parallel approach for 3D modelling of forest fire behavior”, Parallel Computing Technologies, 2007, 96–102 | DOI
[21] K. Gavrilov, G. Accary, D. Morvan, D. Lyubimov, S. Meradji, O. Bessonov, “Numerical simulation of coherent structures over plant canopy”, Flow, Turbulence and Combustion, 86:1 (2011), 89–111 | DOI | Zbl
[22] V. Perminov, “Mathematical modeling of crown forest fire spread”, Open Journal of Forestry, 2:1 (2012), 17–22 | DOI
[23] A. A. Kuleshov, “Matematicheskoe modeli lesnykh pozharov”, Mat. mod., 14:11 (2002), 33–42
[24] A. A. Kuleshov, E. E. Myshetskaia, “Matematicheskoe modelirovanie lesnykh pozharov s primeneniem mnogofaznykh modelei”, Mat. modelirovanie, 17:1 (2005), 34–42 | Zbl
[25] A. A. Kuleshov, E. E. Myshetskaya, “Mathematical simulation of forest fires using multiprocessor computers”, Mathematical Models and Computer Simulations, 1:4 (2009), 629–634 | DOI
[26] A. A. Kuleshov, E. E. Myshetskaya, “Numerical simulation of forest fires based on 2D model”, WSEAS Transactions on Heat and Mass Transfer, 6:4 (2011), 91–100
[27] A. A. Kuleshov, B. N. Chetverushkin, E. E. Myshetskaya, “Parallel computing in forest fire two-dimension modeling”, Computers and Fluids, 80 (2013), 202–206 | DOI | MR | Zbl
[28] Li Liang, Li Xiaofeng, L. Borong, Z. Yinghin, “Improved $(k-\varepsilon)$ two-equation turbulence model for canopy flow”, Atmospheric Environment, 40 (2006), 762–770 | DOI
[29] H. Hiraoka, M. Ohashi, “A $(k-\varepsilon)$ turbulence closure model for plant canopy flows”, J. of Wind Engineering and Industrial Aerodunamics, 96 (2008), 2139–2149 | DOI
[30] B. F. Magnussen, B. H. Hjertager, “On the mathematical modelling of turbulent combustion with special emphasis on soot formation and combustion”, 16th Symp. (Int.) on Combustion (Pittsburgh, PA, The Combustion Inst., 1976), 711–729
[31] S. Galant, D. Grouset, G. Martinez, P. Micheau, J. B. Allemand, “Three-dimensional steady parabolic calculations of large-scale methane turbulent diffusion flames to predict flare radiation under crosswind conditions”, 20th Symp. (Int.) on Combustion (Pittsburgh, PA, The Combustion Institute, 1984), 531–540
[32] G. M. Makhviladze, J. P. Roberts, S. E. Yakush, “Combustion of two-phase hydrocarbon fuel clouds released into the atmosphere”, Combustion and Flame, 118 (1999), 583–605 | DOI
[33] G. M. Makhviladze, S. E. Yakush, “Modelling of formation and combustion of accidentally released fuel clouds. Hazards XVIII: Process safety — sharing best practice”, IChemE Symp. Series, 150 (2004), 270–282
[34] V. V. Kozoderov, E. V. Dmitriev, A. A. Sokolov, “Improved technique for retrieval offorest parameters from hyperspectral remote sensing data”, Optics Express, 23:24 (2015), A1342–A1353 | DOI