Homogenisation of the isothermal acoustics models in the configuration elastic body--porous-elastic medium
Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 3-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider isothermal acoustics in composite medium with two different components. Composite medium is consist from some elastic body and porous-elastic medium. Porous-elastic medium is filled with a fluid. Unique existence of the generalized solution of boundary-value problem is proved. Homogenized models are derived in various cases.
Keywords: composite medium, periodic structure, acoustics equations, porous-elastic, homogenization of periodic structures, two-scale convergence.
Mots-clés : Lame's equations
@article{MM_2016_28_12_a0,
     author = {A. M. Meirmanov and A. A. Gerus and S. A. Gritsenko},
     title = {Homogenisation of the isothermal acoustics models in the configuration elastic body--porous-elastic medium},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--19},
     publisher = {mathdoc},
     volume = {28},
     number = {12},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_12_a0/}
}
TY  - JOUR
AU  - A. M. Meirmanov
AU  - A. A. Gerus
AU  - S. A. Gritsenko
TI  - Homogenisation of the isothermal acoustics models in the configuration elastic body--porous-elastic medium
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 3
EP  - 19
VL  - 28
IS  - 12
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_12_a0/
LA  - ru
ID  - MM_2016_28_12_a0
ER  - 
%0 Journal Article
%A A. M. Meirmanov
%A A. A. Gerus
%A S. A. Gritsenko
%T Homogenisation of the isothermal acoustics models in the configuration elastic body--porous-elastic medium
%J Matematičeskoe modelirovanie
%D 2016
%P 3-19
%V 28
%N 12
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_12_a0/
%G ru
%F MM_2016_28_12_a0
A. M. Meirmanov; A. A. Gerus; S. A. Gritsenko. Homogenisation of the isothermal acoustics models in the configuration elastic body--porous-elastic medium. Matematičeskoe modelirovanie, Tome 28 (2016) no. 12, pp. 3-19. http://geodesic.mathdoc.fr/item/MM_2016_28_12_a0/

[1] Bakhvalov N. S., Panasenko G. P., Homogenization: Averaging Processes in Periodic Media, Spinger, New York, 1989 | MR | MR

[2] Jikov V. V., Kozlov S. M., Oleinik O. A., Homogenization of Differential Operators and Integral Functionals, Springer-Verlag, New York, 1994 | MR

[3] Shamaev A. S., Shumilova V. V., “Homogenization of acoustic equations for a partially perforated elastic material with slightly viscous fluid”, Zhurnal Sibirskogo federalnogo universiteta. Ser. Matem. i fiz., 8:3 (2015), 356–370

[4] Zhikov V. V., Iosifian G. A., “Vvedenie v teoriiu dvukhmasshtabnoi skhodimosti”, Tr. sem. im. I.G. Petrovskogo, 29, 2013, 281–332

[5] Jikov V. V., Pastukhova S. E., “Homogenization of Monotone Operators Under Conditions of Coercitivity and Growth of Variable Order”, Mathematical Notes, 90:1 (2011), 48–63 | DOI | MR | Zbl

[6] Burridge R., Keller J. B., “Poroelasticity equations derived from microstructure”, J. Acoust. Soc. Am., 70:4 (1981), 1140–1146 | DOI | Zbl

[7] Sanchez-Palencia E., Non-Homogeneous Media and Vibration Theory, Lecture Notes in Physics, 129, Springer, Berlin, 1980, 471 pp. | MR

[8] Nguetseng G., “A general convergence result for a functional related to the theory of homogenization”, SIAM J. Math. Anal., 20 (1989), 608–623 | DOI | MR | Zbl

[9] Nguetseng G., “Asymptotic analysis for a stiff variational problem arising in mechanics”, SIAM J. Math. Anal., 21 (1990), 1394–1414 | DOI | MR | Zbl

[10] Lukkassen D., Nguetseng G., Wall P., “Two-scale convergence”, Int. J. Pure and Appl. Math., 2:1 (2002), 35–86 | MR | Zbl

[11] Meirmanov A., “Nguetseng's two-scale convergence method for filtration and seismic acoustic problems in elastic porous media”, Siberian Mathematical Journal, 48 (2007), 519–538 | DOI | MR | Zbl

[12] Meirmanov A., “Acoustic and filtration properties of a thermoelastic porous medium: Biot's equations of thermo-poroelasticity”, Sbornik Mathematics, 199:3 (2008), 1–24 | DOI | MR

[13] Meirmanov A., “Homogenized models for filtration and for acoustic wave propagation in thermoelastic porous media”, Euro. Jnl. of Applied Mathematics, 19 (2008), 259–284 | MR | Zbl

[14] Meirmanov A., “A description of seismic acoustic wave propagation in porous media via homogenization”, SIAM J. Math. Anal., 40:3 (2008), 1272–1289 | DOI | MR | Zbl

[15] Meirmanov A., “Acoustics equations in elastic porous media”, Siberian journal of industrial mathematics, 13:2(42) (2010), 98–110 | Zbl

[16] Meirmanov A., “Derivation of equations of seismic and acoustic wave propagation and equations of filtration via homogenization of periodic structures”, Journal of Mathematical Sciences, 163:2 (2009), 111–150 | DOI | MR | Zbl

[17] Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N., Linear and Quasilinear Equations of Parabolic Type, Translations of Mathematical Monographs, 23, American Mathematical Society Providence, Rhode Island, 1968 | MR

[18] Conca C., “On the application of the homogenization theory to a class of problems arising in fluid mechanics”, Math. Pures et Appl., 64 (1985), 31–75 | MR | Zbl