Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_11_a6, author = {A. A. Belov and N. N. Kalitkin}, title = {Mesh step selection based on curvature for stiff {Cauchy} problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {97--112}, publisher = {mathdoc}, volume = {28}, number = {11}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a6/} }
A. A. Belov; N. N. Kalitkin. Mesh step selection based on curvature for stiff Cauchy problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 97-112. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a6/
[1] E. Hairer, G. Wanner, Solving ordinary differential equations. Stiff and differential-algebraic problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1999
[2] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singuliarno vozmushchennykh zadachakh”, Fundamentalnaia i prikladnaia matematika, 4:3 (1998), 799–851 | Zbl
[3] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniia na kvaziravnomernykh setkah, Fizmatlit, M., 2005, 224 pp.
[4] N. N. Kalitkin, I. P. Poshivaylo, “Inverse Ls-stable Runge–Kutta schemes”, Doklady Mathematics, 85:1 (2012), 139–143 | Zbl
[5] N. N. Kalitkin, I. P. Poshivaylo, “Computations with inverse Runge–Kutta schemes”, Mathematical Models and Computer Simulations, 6:3 (2014), 272–285 | Zbl
[6] I. P. Poshivaylo, Zhestkie i plokho obuslovlennye nelineinye modeli i metody ikh rashcheta, Dissertaciia na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk: 05.13.18, M., 2015, 89 pp.
[7] L. F. Shampine, M. W. Reichelt, “The Matlab ODE suite”, SIAM Journal on Scientific Computing, 18:1 (1997), 1–22 | DOI | MR | Zbl