Mesh step selection based on curvature for stiff Cauchy problems
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 97-112.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new method of automatic step construction is proposed for numerical integration of Cauchy problem for ordinary differential equations. The method is based on using of geometrical properties (namely, curvature and slope) of the integration curve. Formulae for curvature of the integration curve are constructed for different choices of the multidimensional space. In two-dimensional case, they are equivalent to well-known formulae but their general multidimensional form is non-trivial. For the meshes constructed by our method, a procedure of steps splitting is proposed that allows to apply Richardson method and to calculate a posteriori asymptotically precise error estimation for the obtained solutions. There are no such estimations for traditional automatic step selection algorithms. Consequently, the proposed methods sufficiently excel known before algorithms in reliability and trustworthiness. In existing automatic step algorithms, steps can be unexpectedly reduced by 2–4 orders of magnitude without observable reason. This reduces the algorithms' reliability. We have explained the cause of this phenomenon. The methods proposed in this work are especially effective on highly stiff problems. This is illustrated by numerous calculations.
Keywords: stiff Cauchy problem, automatic step selection, curvature in multidimensional space, Richardson method estimations.
@article{MM_2016_28_11_a6,
     author = {A. A. Belov and N. N. Kalitkin},
     title = {Mesh step selection based on curvature for stiff {Cauchy} problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--112},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a6/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
TI  - Mesh step selection based on curvature for stiff Cauchy problems
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 97
EP  - 112
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a6/
LA  - ru
ID  - MM_2016_28_11_a6
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%T Mesh step selection based on curvature for stiff Cauchy problems
%J Matematičeskoe modelirovanie
%D 2016
%P 97-112
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a6/
%G ru
%F MM_2016_28_11_a6
A. A. Belov; N. N. Kalitkin. Mesh step selection based on curvature for stiff Cauchy problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 97-112. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a6/

[1] E. Hairer, G. Wanner, Solving ordinary differential equations. Stiff and differential-algebraic problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1999

[2] A. B. Vasileva, V. F. Butuzov, N. N. Nefedov, “Kontrastnye struktury v singuliarno vozmushchennykh zadachakh”, Fundamentalnaia i prikladnaia matematika, 4:3 (1998), 799–851 | Zbl

[3] N. N. Kalitkin, A. B. Alshin, E. A. Alshina, B. V. Rogov, Vychisleniia na kvaziravnomernykh setkah, Fizmatlit, M., 2005, 224 pp.

[4] N. N. Kalitkin, I. P. Poshivaylo, “Inverse Ls-stable Runge–Kutta schemes”, Doklady Mathematics, 85:1 (2012), 139–143 | Zbl

[5] N. N. Kalitkin, I. P. Poshivaylo, “Computations with inverse Runge–Kutta schemes”, Mathematical Models and Computer Simulations, 6:3 (2014), 272–285 | Zbl

[6] I. P. Poshivaylo, Zhestkie i plokho obuslovlennye nelineinye modeli i metody ikh rashcheta, Dissertaciia na soiskanie uchenoi stepeni kandidata fiziko-matematicheskikh nauk: 05.13.18, M., 2015, 89 pp.

[7] L. F. Shampine, M. W. Reichelt, “The Matlab ODE suite”, SIAM Journal on Scientific Computing, 18:1 (1997), 1–22 | DOI | MR | Zbl