Searching for optimal vine in pair-copula constructions
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 79-96.

Voir la notice de l'article provenant de la source Math-Net.Ru

A procedure of searching for optimal vine in pair-copula constructions is developed. For these purposes vine space is endowed with a metric and a procedure, analogous to regular maximum log-likelihood algorithm, is proposed. It is shown that using this procedure helps to subsequently reduce number of checked vines at the moment of finding optimal vine, compared to full (or equivalently, random) examination of all possible vines.
Mots-clés : pair-copula constructions, optimal vine.
@article{MM_2016_28_11_a5,
     author = {A. I. Travkin},
     title = {Searching for optimal vine in pair-copula constructions},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {79--96},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a5/}
}
TY  - JOUR
AU  - A. I. Travkin
TI  - Searching for optimal vine in pair-copula constructions
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 79
EP  - 96
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a5/
LA  - ru
ID  - MM_2016_28_11_a5
ER  - 
%0 Journal Article
%A A. I. Travkin
%T Searching for optimal vine in pair-copula constructions
%J Matematičeskoe modelirovanie
%D 2016
%P 79-96
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a5/
%G ru
%F MM_2016_28_11_a5
A. I. Travkin. Searching for optimal vine in pair-copula constructions. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 79-96. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a5/

[1] Genest C., Gendron M., Bourdeau-Brien M., “The advent of copulas in finance”, The European Journal of Finance, 15:7–8 (2009), 609–618 | DOI

[2] Joe H., “Families of $m$-variate distributions with given margins and $m(m-1)/2$ bivariate dependence parameters”, Lecture Notes — Monograph Series, 28 (1996), 120–141 | DOI | MR

[3] Bedford T., Cooke R. M., “Vines: A new graphical model for dependent random variables”, The Annals of Statistics, 30:4 (2002), 1031–1068 | DOI | MR | Zbl

[4] Sklar A., “Fonctions de repartition a $n$ dimensions et leurs marges”, Publications de l'Institut de Statistique de l'Universite de Paris, 8 (1959), 229–231 | MR

[5] Nelsen R. B., An Introduction to Copulas, Springer, 2006, 269 pp. | MR | Zbl

[6] Fantazzini D., “Analysis of multidimensional probability distributions with copula functions”, Applied Econometrics, 2011, no. 2(22), 98–134

[7] Morales-Napoles O., “Counting vines”, Dependence Modeling. Vine-Copula Handbook, World Scientific Publishing, Singapore, 2011, 189–218 | MR

[8] Dempster A. P., “Covariance Selection”, Biometrics, 28:1 (1972), 157–175 | DOI

[9] Dissman J. et al., “Selecting and estimating regular vine copulae and application to financial returns”, Computational Statistics and Data Analysis, 59 (2013), 52–69 | DOI | MR

[10] Kendall M., “A new measure of rank correlation”, Biometrica, 1938, no. 1/2, 81–89 | DOI | MR

[11] Kruskal J. B., “On the shortest spanning subtree of a graph and the traveling salesman problem”, Proceedings of the American Mathematical Society, 7:1 (1956), 48–50 | DOI | MR | Zbl

[12] Li X. et al., “On approximation of copulas”, Distributions with Given Marginal and Moment Problems, Kluwer Academic Publishers, Dordrecht, 1997, 107–116 | MR | Zbl

[13] Sancetta A., Satchell S., “The Bernstein copula and its applications to modeling and approximations of multivariate distributions”, Econometric Theory, 20 (2004), 1–38 | DOI | MR

[14] Nelson D. B., “Conditional Heteroskedastisity in Asset Returns: A New Approach”, Econometrica, 59:2 (1991), 347–370 | DOI | MR | Zbl

[15] Hansen B. E., “Autoregressive Conditional Density Estimation”, International Economic Review, 35:3 (1994), 705–730 | DOI | Zbl