Numerical simulation of turbulent flow in a polydispersed two-phase jet with evaporating droplets
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 64-78.

Voir la notice de l'article provenant de la source Math-Net.Ru

A numerical model for predicting free round gas-droplet polydispersed jet using Euler approach is presented. The numerical study of the effect of droplet size and its mass fraction on the flow structure, heat transfer and turbulence of the gas phase is carried out. The Reynolds stress model is used for predicting of the turbulence of the gas phase. The polydispersity of the dispersed phase has the little effect on the flow structure and heat transfer in jet in this range of initial parameters. Gas-droplet round jet becomes more narrow and long-range compared to the singlephase one. The addition of evaporating droplets leads to the suppression of turbulence of the gas phase. The maximal suppression is shown in the initial zone of the jet, where the mass fraction of dispersed phase is the biggest and droplet size decreases slightly due to evaporation.
Keywords: free round gas-droplet jet, polydispersity, droplet evaporation, flow structure.
Mots-clés : turbulence
@article{MM_2016_28_11_a4,
     author = {M. A. Pakhomov and V. I. Terekhov},
     title = {Numerical simulation of turbulent flow in a polydispersed two-phase jet with evaporating droplets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {64--78},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a4/}
}
TY  - JOUR
AU  - M. A. Pakhomov
AU  - V. I. Terekhov
TI  - Numerical simulation of turbulent flow in a polydispersed two-phase jet with evaporating droplets
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 64
EP  - 78
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a4/
LA  - ru
ID  - MM_2016_28_11_a4
ER  - 
%0 Journal Article
%A M. A. Pakhomov
%A V. I. Terekhov
%T Numerical simulation of turbulent flow in a polydispersed two-phase jet with evaporating droplets
%J Matematičeskoe modelirovanie
%D 2016
%P 64-78
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a4/
%G ru
%F MM_2016_28_11_a4
M. A. Pakhomov; V. I. Terekhov. Numerical simulation of turbulent flow in a polydispersed two-phase jet with evaporating droplets. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 64-78. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a4/

[1] G. N. Abramovich (red.), Teoria turbulentnykh strui, Nauka, M., 1984, 716 pp.

[2] A. A. Shariber, L. B. Gavin, V. A. Naumov, V. P. Iatsenko, Turbulentnye techenia gazovzvesei, Naukova dumka, Kiev, 1987, 239 pp.

[3] W. A. Sirignano, “Fluid dynamics of sprays — 1992 Freeman scholar lecture”, ASME. J. Fluids Eng., 115 (1993), 345–378 | DOI

[4] P. Jenny, D. Roekaerts, N. Beishuizen, “Modeling of turbulent dilute spray combustion”, Prog. Energy Combust. Sci., 38 (2012), 846–887 | DOI

[5] A. S. P. Solomon, J. S. Shuen, Q. F. Zhang, G. M. Faeth, “Measurements and predictions of the structure of evaporating sprays”, ASME J. Heat Transfer, 107 (1985), 679–686 | DOI

[6] V. G. McDonell, G. S. Samuelsen, “An experimental data base for computational fluid dynamics nonreacting methanol sprays”, ASME J. Fluids Eng., 117 (1995), 145–153 | DOI

[7] Y.-C. Chen, S. H. Starner, A. R. Masri, “A detailed experimental investigation of well-defined, turbulent evaporating spray jets of acetone”, Int. J. Multiphase Flow, 32 (2006), 389–412 | DOI | Zbl

[8] G. N. Abramovich, “O vliianii tverdykh chastits ili kapel na strukturu turbulentnoi gazovoi strui”, Doklady AN SSSR, 190:5 (1970), 1052–1055

[9] Yu. V. Zuev, I. A. Lepeshinskii, V. A. Sovetov, “Experimental and numerical investigation of a gasdroplet polydisperse turbulent jet”, Fluid Dynamics, 21:5 (1986), 730–735 | DOI

[10] A. A. Mostafa, S. E. Elghobashi, “A two-equation turbulence model for jet flows laden with vaporizing droplets”, Int. J. Multiphase Flow, 11 (1985), 415–433 | DOI

[11] A. A. Mostafa, H. C. Mongia, “On the modeling of turbulent evaporating sprays: Eulerian versus Lagrangian approach”, Int. J. Heat Mass Transfer, 30 (1987), 2583–2593 | DOI

[12] A. A. Vinberg, L. I. Zaichik, V. A. Pershukov, “Calculation of the momentum and heat transfer in turbulent gas-particle jet flows”, Fluid Dynamics, 27:3 (1992), 353–362 | DOI | Zbl

[13] Y. V. Zuev, I. A. Lepeshinsky, “Two-phase multicomponent turbulent jet with phase transitions”, Fluid Dynamics, 30:5 (1995), 750–757 | DOI

[14] A. Berlemont, M. S. Grancher, G. Gousbet, “Heat and mass coupling between vaporizing droplets and turbulence using Lagrangian approach”, Int. J. Heat Mass Transfer, 38 (1995), 3023–3034 | DOI | Zbl

[15] X. Q. Chen, J. F. C. Pereira, “Computation of turbulent evaporating spray with well-specified measurements: a sensitivity study on droplet properties”, Int. J. Heat Mass Transfer, 39 (1996), 441–454 | DOI

[16] B. M. Galitseiskii, V. Iu. Shustrova, “Dvukhfaznye turbulentnye struinye techeniia s fazovymi perekhodami”, Matematicheskoe modelirovanie, 17:7 (2005), 79–93 | Zbl

[17] N. A. Beishuizen, B. Naud, D. Roekaerts, “Evaluation of a modified Reynolds stress model for turbulent dispersed two-phase flows including two-way coupling”, Flow, Turbulence, Combust., 79 (2007), 321–341 | DOI | Zbl

[18] M. A. Pakhomov, V. I. Terekhov, “Effect of vaporizing droplets on the structure of a submerged spray”, Fluid Dynamics, 44:3 (2009), 419–429 | DOI | Zbl

[19] E. Amani, M. R. H. Nobari, “Systematic tuning of dispersion models for simulation of evaporating sprays”, Int. J. Multiphase Flow, 48 (2013), 11–31 | DOI

[20] Iu. V. Zuev, I. A. Lepeshinskii, P. V. Nikitin, “Kriterialnoe issledovanie mezhfaznogo teploobmena v dvukhfaznoi turbulentnoi neizotermicheskoi strue”, Matemat. model., 27:5 (2015), 114–126 | Zbl

[21] Yu. A. Lozhkin, D. M. Markovich, M. A. Pakhomov, V. I. Terekhov, “Investigation of the structure of a polydisperse gas-droplet jet in the initial region. Experiment and numerical simulation”, Thermophysics and Aeromechanics, 21:3 (2014), 293–307 | DOI | MR

[22] I. V. Derevich, L. I. Zaichik, “Particle deposition from a turbulent flow”, Fluid Dynamics, 23:5 (1988), 722–729 | DOI | Zbl

[23] M. W. Reeks, “On a kinetic equation for the transport of particles in turbulent flows”, Phys. Fluids A, 3 (1991), 446–456 | DOI | Zbl

[24] I. V. Derevich, “The hydrodynamics and heat and mass transfer of particles under conditions of turbulent flow of gas suspension in a pipe and in an axisymmetric jet”, High Temperature, 40:1 (2002), 78–91 | DOI

[25] F. Prevost, J. Boree, H. J. Nuglish, G. Sharnay, “Measurements of fluid/particle correlated motion in the far field of an axisymmetric jet”, Int. J. Multiphase Flow, 22 (1996), 686–701 | DOI

[26] S. P. Lin, R. D. Reitz, “Drop and spray formation from a liquid jet”, Ann. Rev. Fluid Mech., 30 (1998), 85–105 | DOI | MR

[27] L. E. Sternin, B. N. Maslov, A. A. Shraiber, A. M. Podvysotskii, Dvukhfaznye mono- i polidispersnye techenia gaza s chactizami, Mashinostroenie, M., 1980, 172 pp.

[28] N. Shima, “Low-Reynolds-number second-moment closure without wall-refection redistribution terms”, Int. J. Heat Fluid Flow, 19 (1998), 549–555 | DOI

[29] V. I. Terekhov, M. A. Pakhomov, “The thermal efficiency of near-wall gas-droplets screens. I. Numerical Modeling”, Int. J. Heat Mass Transfer, 48 (2005), 1747–1759 | DOI | Zbl

[30] N. R. Panchapakesan, J. L. Lumley, “Turbulence measurements in axisymmetric jets of air and helium. Pt. 1. Air jet”, J. Fluid Mech., 246 (1993), 197–223 | DOI

[31] A. Yu. Varaksin, “Fluid dynamics and thermal physics of two-phase flows: Problems and achievements”, High Temperature, 51:3 (2013), 377–407 | DOI