Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_11_a3, author = {O. N. Koroleva and A. V. Mazhukin and V. I. Mazhukin and P. V. Breslavskiy}, title = {Analytical approximation of the {Fermi--Dirac} integrals of half-integer and integer orders}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {55--63}, publisher = {mathdoc}, volume = {28}, number = {11}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/} }
TY - JOUR AU - O. N. Koroleva AU - A. V. Mazhukin AU - V. I. Mazhukin AU - P. V. Breslavskiy TI - Analytical approximation of the Fermi--Dirac integrals of half-integer and integer orders JO - Matematičeskoe modelirovanie PY - 2016 SP - 55 EP - 63 VL - 28 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/ LA - ru ID - MM_2016_28_11_a3 ER -
%0 Journal Article %A O. N. Koroleva %A A. V. Mazhukin %A V. I. Mazhukin %A P. V. Breslavskiy %T Analytical approximation of the Fermi--Dirac integrals of half-integer and integer orders %J Matematičeskoe modelirovanie %D 2016 %P 55-63 %V 28 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/ %G ru %F MM_2016_28_11_a3
O. N. Koroleva; A. V. Mazhukin; V. I. Mazhukin; P. V. Breslavskiy. Analytical approximation of the Fermi--Dirac integrals of half-integer and integer orders. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 55-63. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/
[1] Ch. Kittel, Introduction to Solid State Physics, 8 edition, Wiley, 2004, 704 pp.
[2] J. M. Ziman, Principles of the Theory of Solid, 2 edition, Cambridge University Press, 1979, 452 pp. | MR
[3] O. Madelung, Introduction to Solid-State Theory, Springer Series in Solid-State Sciences, Springer, 1978, 491 pp. | DOI | MR
[4] W. Pauli, “Uber Gasentartung und Paramagnetismus”, Zeitschrift für Physik, 41 (1927), 81–102 | DOI | Zbl
[5] A. Sommerfeld, “Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik”, Zeitschrift für Physik, 47 (1928), 1–3 | DOI
[6] R. B. Dingle, “The Fermi–Dirac integrals $\mathfrak{J}_p(\eta)=(p!)^{-1}\int_0^\infty\varepsilon^p(e^{\varepsilon-\eta}+1)^{-1}d\varepsilon$”, Applied Scientific Research, 6 (1957), 225–239 | DOI | MR | Zbl
[7] J. S. Blakemore, “Approximations for Fermi-Dirac integrals, especially the function $\mathfrak{J}_{1/2}(\eta)$, used to describe electron density in a semiconductor”, Solid-State Electronics, 25:11 (1982), 1067–1076 | DOI
[8] H. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06-and 0.53-pm picosecond laser pulses”, Phys. Rev. B, 35 (1987), 8166 | DOI
[9] P. van Halen, D. L. Pulfrey, “Accurate, short series approximations to Fermi–Dirac integrals of order -1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2”, Journal of Applied Physics, 57 (1985), 5271–5274 | DOI
[10] F. G. Lether, “Variable precision algorithm for the numerical computation of the Fermi–Dirac function $F_j(x)$ of order $j =-3/2$”, J. Sci. Comput., 16 (2001), 69–79 | DOI | MR | Zbl
[11] T. M. Garoni, N. E. Frankel, M. L. Glasser, “Complete asymptotic expansions of the Fermi–Dirac integrals $\mathcal{F}_p(\eta)=1/\Gamma(p+1)\int_0^\infty\varepsilon^p/(1+e^{\varepsilon-\eta})d\varepsilon$”, J. Math. Phys., 42:4 (2001), 1860–1868 | DOI | MR | Zbl
[12] B. Pichon, “Numerical calculation of the generalized Fermi–Dirac integrals”, Computer Physics Communications, 55 (1989), 127–136 | DOI
[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 762 pp. | MR | Zbl
[14] J. McDougall, E. C. Stoner, “The computation of Fermi–Dirac functions”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 237 (1938), 67–104 | DOI
[15] C. Beer, M. N. Chase, P. F. Choquard, “Extension of McDougall–Stoner tables of the Fermi–Dirac functions”, Helvetica Physica Acta, 28 (1955), 529–542 | MR | Zbl
[16] N. N. Kalitkin, L. V. Kuzmina, “Interpoliatcionnye formuly dlia funktcii Fermi–Diraka”, Zh. vychisl. matem. i matem. fiz., 15:3 (1975), 768–771 | Zbl
[17] N. N. Kalitkin, I. V. Ritus, “Smooth approximation of Fermi-Dirac functions”, USSR Computational Mathematics and Mathematical Physics, 26:2 (1986), 87–89 | DOI | MR
[18] D. Bednarczyk, J. Bednarczyk, “The approximation of the Fermi–Dirac integral $\mathfrak{J}_{1/2}(\eta)$”, Physics Letters, 64A:4 (1978)
[19] X. Aymerich-Humet, F. Serra-Mestres, J. Millan, “An analytical approximation for the Fermi–Dirac integral $\mathrm{F}_{1/2}(\eta)$”, Solid-St. Electron., 24 (1981), 981 | DOI
[20] A. A. Samarskii, A. V. Gulin, Chislennye metody, Fizmatlit, M., 1989, 432 pp.
[21] N. N. Kalitkin, Chislennye metody, BKHV, St.-Peterburg, 2011, 592 pp.