Analytical approximation of the Fermi--Dirac integrals of half-integer and integer orders
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 55-63.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain continuous analytical expressions approximating the Fermi–Dirac integrals of orders $j=-1/2, 1/2, 1, 3/2, 2, 5/2, 3, 7/2$ in a convenient form for calculation with reasonable accuracy $(1\div4)\%$ in a wide range of the degeneration in this paper. An approach based on the least square method for approximation was used. The demands to the approximation of integrals, to the range of variation of order j and to the definitional domain are considered in terms of the use of Fermi–Dirac integrals to determine the properties of metals and semiconductors.
Keywords: Fermi–Dirac integrals, analytical approximation.
@article{MM_2016_28_11_a3,
     author = {O. N. Koroleva and A. V. Mazhukin and V. I. Mazhukin and P. V. Breslavskiy},
     title = {Analytical approximation of the {Fermi--Dirac} integrals of half-integer and integer orders},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {55--63},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/}
}
TY  - JOUR
AU  - O. N. Koroleva
AU  - A. V. Mazhukin
AU  - V. I. Mazhukin
AU  - P. V. Breslavskiy
TI  - Analytical approximation of the Fermi--Dirac integrals of half-integer and integer orders
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 55
EP  - 63
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/
LA  - ru
ID  - MM_2016_28_11_a3
ER  - 
%0 Journal Article
%A O. N. Koroleva
%A A. V. Mazhukin
%A V. I. Mazhukin
%A P. V. Breslavskiy
%T Analytical approximation of the Fermi--Dirac integrals of half-integer and integer orders
%J Matematičeskoe modelirovanie
%D 2016
%P 55-63
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/
%G ru
%F MM_2016_28_11_a3
O. N. Koroleva; A. V. Mazhukin; V. I. Mazhukin; P. V. Breslavskiy. Analytical approximation of the Fermi--Dirac integrals of half-integer and integer orders. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 55-63. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a3/

[1] Ch. Kittel, Introduction to Solid State Physics, 8 edition, Wiley, 2004, 704 pp.

[2] J. M. Ziman, Principles of the Theory of Solid, 2 edition, Cambridge University Press, 1979, 452 pp. | MR

[3] O. Madelung, Introduction to Solid-State Theory, Springer Series in Solid-State Sciences, Springer, 1978, 491 pp. | DOI | MR

[4] W. Pauli, “Uber Gasentartung und Paramagnetismus”, Zeitschrift für Physik, 41 (1927), 81–102 | DOI | Zbl

[5] A. Sommerfeld, “Zur Elektronentheorie der Metalle auf Grund der Fermischen Statistik”, Zeitschrift für Physik, 47 (1928), 1–3 | DOI

[6] R. B. Dingle, “The Fermi–Dirac integrals $\mathfrak{J}_p(\eta)=(p!)^{-1}\int_0^\infty\varepsilon^p(e^{\varepsilon-\eta}+1)^{-1}d\varepsilon$”, Applied Scientific Research, 6 (1957), 225–239 | DOI | MR | Zbl

[7] J. S. Blakemore, “Approximations for Fermi-Dirac integrals, especially the function $\mathfrak{J}_{1/2}(\eta)$, used to describe electron density in a semiconductor”, Solid-State Electronics, 25:11 (1982), 1067–1076 | DOI

[8] H. van Driel, “Kinetics of high-density plasmas generated in Si by 1.06-and 0.53-pm picosecond laser pulses”, Phys. Rev. B, 35 (1987), 8166 | DOI

[9] P. van Halen, D. L. Pulfrey, “Accurate, short series approximations to Fermi–Dirac integrals of order -1/2, 1/2, 1, 3/2, 2, 5/2, 3, and 7/2”, Journal of Applied Physics, 57 (1985), 5271–5274 | DOI

[10] F. G. Lether, “Variable precision algorithm for the numerical computation of the Fermi–Dirac function $F_j(x)$ of order $j =-3/2$”, J. Sci. Comput., 16 (2001), 69–79 | DOI | MR | Zbl

[11] T. M. Garoni, N. E. Frankel, M. L. Glasser, “Complete asymptotic expansions of the Fermi–Dirac integrals $\mathcal{F}_p(\eta)=1/\Gamma(p+1)\int_0^\infty\varepsilon^p/(1+e^{\varepsilon-\eta})d\varepsilon$”, J. Math. Phys., 42:4 (2001), 1860–1868 | DOI | MR | Zbl

[12] B. Pichon, “Numerical calculation of the generalized Fermi–Dirac integrals”, Computer Physics Communications, 55 (1989), 127–136 | DOI

[13] W. H. Press, S. A. Teukolsky, W. T. Vetterling, B. P. Flannery, Numerical Recipes: The Art of Scientific Computing, 3rd ed., Cambridge University Press, New York, 2007, 762 pp. | MR | Zbl

[14] J. McDougall, E. C. Stoner, “The computation of Fermi–Dirac functions”, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 237 (1938), 67–104 | DOI

[15] C. Beer, M. N. Chase, P. F. Choquard, “Extension of McDougall–Stoner tables of the Fermi–Dirac functions”, Helvetica Physica Acta, 28 (1955), 529–542 | MR | Zbl

[16] N. N. Kalitkin, L. V. Kuzmina, “Interpoliatcionnye formuly dlia funktcii Fermi–Diraka”, Zh. vychisl. matem. i matem. fiz., 15:3 (1975), 768–771 | Zbl

[17] N. N. Kalitkin, I. V. Ritus, “Smooth approximation of Fermi-Dirac functions”, USSR Computational Mathematics and Mathematical Physics, 26:2 (1986), 87–89 | DOI | MR

[18] D. Bednarczyk, J. Bednarczyk, “The approximation of the Fermi–Dirac integral $\mathfrak{J}_{1/2}(\eta)$”, Physics Letters, 64A:4 (1978)

[19] X. Aymerich-Humet, F. Serra-Mestres, J. Millan, “An analytical approximation for the Fermi–Dirac integral $\mathrm{F}_{1/2}(\eta)$”, Solid-St. Electron., 24 (1981), 981 | DOI

[20] A. A. Samarskii, A. V. Gulin, Chislennye metody, Fizmatlit, M., 1989, 432 pp.

[21] N. N. Kalitkin, Chislennye metody, BKHV, St.-Peterburg, 2011, 592 pp.