Model and program package for study and optimization of generation characteristics of semiconductor superlattice
Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 19-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The program package for the simulation of the dynamics of semiconductor superlattice under influence of external magnetic field has been developed. The analytical and numerical model on which the program package is based are described in detail in the paper. The approbation of the deleloped package shows, that it can be effectively used to study the dynamics of semiconductor superlattices, including the optimization of generation characteristics of sub-THz/THz devices.
Keywords: semiconductor superlattice, program package, numerical model.
@article{MM_2016_28_11_a1,
     author = {V. V. Makarov and A. O. Selskii and V. A. Maksimenko and A. A. Koronovskii and O. I. Moskalenko and A. E. Khramov},
     title = {Model and program package for study and optimization of generation characteristics of semiconductor superlattice},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {19--32},
     publisher = {mathdoc},
     volume = {28},
     number = {11},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a1/}
}
TY  - JOUR
AU  - V. V. Makarov
AU  - A. O. Selskii
AU  - V. A. Maksimenko
AU  - A. A. Koronovskii
AU  - O. I. Moskalenko
AU  - A. E. Khramov
TI  - Model and program package for study and optimization of generation characteristics of semiconductor superlattice
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 19
EP  - 32
VL  - 28
IS  - 11
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a1/
LA  - ru
ID  - MM_2016_28_11_a1
ER  - 
%0 Journal Article
%A V. V. Makarov
%A A. O. Selskii
%A V. A. Maksimenko
%A A. A. Koronovskii
%A O. I. Moskalenko
%A A. E. Khramov
%T Model and program package for study and optimization of generation characteristics of semiconductor superlattice
%J Matematičeskoe modelirovanie
%D 2016
%P 19-32
%V 28
%N 11
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a1/
%G ru
%F MM_2016_28_11_a1
V. V. Makarov; A. O. Selskii; V. A. Maksimenko; A. A. Koronovskii; O. I. Moskalenko; A. E. Khramov. Model and program package for study and optimization of generation characteristics of semiconductor superlattice. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 19-32. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a1/

[1] V. L. Bratman, A. G. Litvak, E. V. Suvorov, “Mastering the terahertz domain: sources and applications”, Physics Uspekhi, 54 (2011), 837–844 | DOI | DOI

[2] M. Tonouchi, “Cutting-edge THz-technology”, Nature Photonics, 2007, no. 1, 97–105 | DOI

[3] C. R. Sirtori, “Applied physics: Bridge for the terahertz gap”, Nature, 417 (2002), 132–133 | DOI

[4] Y. Watanabe, K. Kawase, T. Ikari, H. Ito, Y. Ishikawa, H. Minamide, “Component spatial pattern analysis of chemicals using terahertz spectroscopic imaging”, Appl. Phys. Lett., 83 (2003), 800–802 | DOI

[5] P. H. Siegel, “THz Technology”, IEEE trans. Microwave Theory Techniques, 50:3 (2002), 910–928 | DOI

[6] Ho-Jin Song, T. Nagatsuma, “Present and Future of Terahertz Communications”, IEEE Transactions on Terahertz Science and Technology, 1 (2011), 256–263 | DOI

[7] M. I. Ovsiannikov, Iu. A. Romanov, V. N. Shabanov, R. G. Loginova, “Poluprovodnikovye periodicheskie struktury”, Fizika i tekhnika poluprovodnikov, 12:4 (1970), 2225–2231

[8] L. Esaki, R. Tsu, “Superlattices and Negative Differential Conductivity in Semiconductors”, IBM Journal of Research and Development, 14:1 (1970), 61–65 | DOI

[9] A. Y. Shik, “Superlattices — Periodic Semiconductor Structures”, Sov. Phys.-Semicond., 1975, no. 8, 1195

[10] A. O. Selskii, A. A. Koronovskii, A. E. Hramov et al., “Effect of temperature on resonant electron transport through stochastic conduction channels in superlattices”, Phys. Rev. B, 84 (2011), 235311 | DOI

[11] V. A. Maksimenko, V. V. Makarov, A. A. Koronovskii et al., “The effect of collector doping on the high-frequency generation in strongly coupled semiconductor superlattice”, Europhysics Letters, 109 (2015), 47007 | DOI

[12] V. V. Makarov, A. E. Hramov, A. A. Koronovskii et al., “Sub-terahertz amplification in a semiconductor superlattice with moving charge domains”, Appl. Phys. Lett., 106 (2015), 043503 | DOI

[13] A. E. Hramov, V. V. Makarov, A. A. Koronovskii et al., “Subterahertz Chaos Generation by Coupling a Superlattice to a Linear Resonator”, Phys. Rev. Lett., 112 (2014), 116603 | DOI

[14] G. Belle, J. C. Maan, G. Weimann, “Measurement of the miniband width in a superlattice with interband absorption in a magnetic field parallel to the layers”, Solid state communications, 56:1 (1985), 65–68 | DOI

[15] A. O. Sel'skii, A. A. Koronovskii, O. I. Moskalenko, A. E. Hramov, T. M. Fromhold, M. T. Greenaway, A. G. Balanov, “Studying transitions between different regimes of current oscillations generated in a semiconductor superlattice in the presence of a tilted magnetic field at various temperatures”, Technical Physics Letters, 41:8 (2015), 768–770 | DOI

[16] V. V. Makarov, V. A. Maksimenko, A. O. Selskii et al., “THz-generation in semiconductor superlattice in the external tilted magnetic field”, Proc. SPIE, 9322, 2015, 932211 | DOI

[17] A. Wacker, “Semiconductor superlattices: a model system for nonlinear transport”, Physics Reports, 357 (2002), 1–111 | DOI | Zbl

[18] L. L. Bonilla, H. T. Grahn, “Nonlinear dynamics of semiconductor superlattices”, Rep. Prog. Phys., 68 (2005), 577–683 | DOI

[19] T. M. Fromhold, A. Patane, S. Bujkiewicz et al., “Chaotic electron diffusion through stochastic webs enhances current flow in superlattices”, Nature, 428 (2004), 726–730 | DOI

[20] M. T. Greenaway, A. G. Balanov, E. Scholl, T. M. Fromhold, “Controlling and enhancing terahertz collective electron dynamics in superlattices by chaos-assisted miniband transport”, Phys. Rev. B, 80 (2009), 205318 | DOI

[21] T. Hyart, J. Mattas, K. N. Alekseev, “Model of the Influence of an External Magnetic Field on the Gain of Terahertz Radiation from Semiconductor Superlattices”, Phys. Rev. Lett., 103 (2010), 117401 | DOI

[22] Iu. A. Romarov, “Nonlinear effects in periodic semiconductor structures”, Optics and Spectroscopy, 33:5 (1972), 917–920

[23] A. Patane, D. Sherwood, L. Eaves et al., “Tailoring the electronic properties of GaAs/AlAs superlattices by InAs layer insertions”, Appl. Phys. Lett., 81 (2002), 661–663 | DOI

[24] N. Alexeeva, M. T. Greenaway, A. G. Balanov et al., “Controlling High-Frequency Collective Electron Dynamics via Single-Particle Complexity”, Phys. Rev. Lett., 109 (2012), 024102 | DOI

[25] D. Fowler, D. P. A. Hardwick, A. Patane et al., “Magnetic-field-induced miniband conduction in semiconductor superlattices”, Phys. Rev. B, 76 (2007), 245303 | DOI

[26] D. Potter, Computational physics, Wiley, London, 1973, 315 pp. | MR | Zbl

[27] A. Jappsen, A. Amann, A. Wacker, E. Scholl, E. Schomburg, “High-frequency impedance of driven superlattices”, J. Appl. Phys., 92:6 (2002), 3137 | DOI

[28] T. Hyart, K. Alekseev, E. Thuneberg, “Bloch gain in dc-ac-driven semiconductor superlattices in the absence of electric domains”, Physical Review B, 77:16 (2008), 165330 | DOI