Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_11_a0, author = {F. A. Kuterin and M. I. Sumin}, title = {On the regularized {Lagrange} principle in the iterative form and its application for solving unstable problems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {3--18}, publisher = {mathdoc}, volume = {28}, number = {11}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_11_a0/} }
TY - JOUR AU - F. A. Kuterin AU - M. I. Sumin TI - On the regularized Lagrange principle in the iterative form and its application for solving unstable problems JO - Matematičeskoe modelirovanie PY - 2016 SP - 3 EP - 18 VL - 28 IS - 11 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_11_a0/ LA - ru ID - MM_2016_28_11_a0 ER -
%0 Journal Article %A F. A. Kuterin %A M. I. Sumin %T On the regularized Lagrange principle in the iterative form and its application for solving unstable problems %J Matematičeskoe modelirovanie %D 2016 %P 3-18 %V 28 %N 11 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_11_a0/ %G ru %F MM_2016_28_11_a0
F. A. Kuterin; M. I. Sumin. On the regularized Lagrange principle in the iterative form and its application for solving unstable problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 11, pp. 3-18. http://geodesic.mathdoc.fr/item/MM_2016_28_11_a0/
[1] A. N. Tikhonov, V. Ia. Arsenin, Metody resheniia nekorrektnykh zadach, Nauka, M., 1986, 288 pp.
[2] A. B. Bakushinskii, A. V. Goncharskii, Nekorrektnye zadachi. Chislennye metody i prilozheniia, Izd-vo MGU, M., 1989, 199 pp.; 432 с.
[3] F. P. Vasilev, Metody optimizatsii, V 2-kh kn., MTSNMO, M., 2011, 620 pp.; 432 с.
[4] M. I. Sumin, “Duality-based regularization in a linear convex mathematical programming problem”, Computational Mathematics and Mathematical Physics, 47:4 (2007), 579–600 | DOI | MR | Zbl
[5] M. I. Sumin, Nekorrektnye zadachi i metody ikh resheniia. Materialy k lektsiiam dlia studentov starshikh kursov, Uchebnoe posobie, Izdatelstvo Nizhegorodskogo universiteta, Nizhnii Novgorod, 2009, 289 pp.
[6] M. I. Sumin, “Regularized parametric Kuhn–Tucker theorem in a Hilbert space”, Computational Mathematics and Mathematical Physics, 51:9 (2011), 1489–1509 | DOI | MR | Zbl
[7] M. I. Sumin, “On the Stable Sequential Kuhn–Tucker Theorem and its Applications”, Applied Mathematics, 3:10A, Special issue «Optimization» (2012), 1334–1350 | DOI
[8] M. I. Sumin, “Stable sequential convex programming in a Hilbert space and its application for solving unstable problems”, Computational Mathematics and Mathematical Physics, 54:1 (2014), 22–44 | DOI | DOI | MR | Zbl
[9] K. J. Arrow, L. Hurwicz, H. Uzawa, Studies in Linear and Non-Linear Programming, Stanford University Press, Stanford, 1958, 229 pp. | MR | Zbl
[10] M. Minoux, Programmation mathematique: theorie et algorithmes, v. 1, Dunod, Paris, 1983, 294 pp. ; M. Minoux, Programmation mathematique: theorie et algorithmes, v. 2, Dunod, Paris, 1983, 276 pp. | MR | Zbl
[11] J. Warga, Optimal Control of Differential and Functional Equations, Academic Press, NY., 1972, 546 pp. | MR | Zbl
[12] A. B. Bakushinskii, “Methods for solving monotonic variational inequalities, based on the principle of iterative regularization”, USSR Computational Mathematics and Mathematical Physics, 17:6 (1977), 12–24 | DOI | MR | Zbl
[13] A. B. Bakushinskii, A. V. Goncharskii, Iterativnye metody resheniia nekorrektnykh zadach, Nauka, M., 1989, 130 pp.
[14] M. L. Krasnov, A. I. Kiselev, G. I. Makarenko, Integralnye uravneniia, Nauka, M., 1976, 216 pp.
[15] A. A. Samarskii, A. V. Gulin, Chislennye metody, Ucheb. posobie dlia vuzov, Nauka, M., 1989, 432 pp.
[16] M. I. Sumin, “Iterativnaia reguliarizatsiia gradientnogo dvoistvennogo metoda dlia resheniia uravneniia Fredgolma pervogo roda”, Vestnik Nizhegorodskogo universiteta. Seriia Matematika, 2004, no. 1(2), 192–208