Modeling of the electric current flow in artificial graphite
Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 125-138.

Voir la notice de l'article provenant de la source Math-Net.Ru

The modeling of the electrical connection of crystals in polycrystalline for the location of the contact points on the surface is performed with solving of the elliptic boundary value problem. Chain models and components of the conductivity tensor of graphite quasi-monocrystal are used for the calculation of the electrical resistivity of artificial graphite. Parameters, which affect its value and type temperature dependence of the electrical resistivity are considered. Integral dissipation of electricity along and across the layers is evaluated.
Keywords: electrical resistance, boundary value problem, contact resistance, asymptotic behavior, chain model, polycrystalline graphite.
@article{MM_2016_28_10_a9,
     author = {A. V. Dmitriev and A. A. Ershov},
     title = {Modeling of the electric current flow in artificial graphite},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {125--138},
     publisher = {mathdoc},
     volume = {28},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a9/}
}
TY  - JOUR
AU  - A. V. Dmitriev
AU  - A. A. Ershov
TI  - Modeling of the electric current flow in artificial graphite
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 125
EP  - 138
VL  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a9/
LA  - ru
ID  - MM_2016_28_10_a9
ER  - 
%0 Journal Article
%A A. V. Dmitriev
%A A. A. Ershov
%T Modeling of the electric current flow in artificial graphite
%J Matematičeskoe modelirovanie
%D 2016
%P 125-138
%V 28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a9/
%G ru
%F MM_2016_28_10_a9
A. V. Dmitriev; A. A. Ershov. Modeling of the electric current flow in artificial graphite. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 125-138. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a9/

[1] A. V. Dmitriev, A. I. Lutkov, “Kontaktnoe elektrosoprotivlenie zeren v polikristallicheskom grafite”, Khimiia tverdogo topliva, 1989, no. 6, 134–141

[2] A. V. Dmitriev, Nauchnye osnovy razrabotki sposobov snizheniia udelnogo elektricheskogo soprotivleniia grafitirovannykh elektrodov, ChGPU, Cheliabinsk, 2005, 197 pp.

[3] A. V. Dmitriev, “Kontaktnoe soprotivlenie cheshuek prirodnogo grafita v teksturirovannoi kompozitsii na ego osnove”, Fizicheskie svoistva uglerodnykh materialov, Sbornik nauchnykh trudov, ChGPI, Cheliabinsk, 1983, 75–80

[4] A. V. Dmitriev, A. A. Ershov, “Kontaktnoe elektricheskoe soprotivlenie cheshuek v ekstrudirovannykh zagotovkakh kompozitsii na osnove prirodnogo iavnokristallicheskogo grafita”, Khimiia tverdogo topliva, 2011, no. 6, 53–60

[5] N. N. Poliakov, “Ob izmerenii koeffitsienta Kholla i elektroprovodimosti anizotropnykh provodnikov”, Zavodskaia laboratoriia, 1989, no. 3, 20–22

[6] A. A. Ershov, “On Measurement of Electrical Conductivity”, Computational Mathematics and Mathematical Physics, 53:6 (2013), 823–826 | DOI | DOI | MR | Zbl

[7] Sosedov V. P. (red.), Svoistva konstruktsionnykh materialov na osnove ugleroda, Spravochnik, Metallurgiia, M., 1975, 334 pp.

[8] A. V. Dmitriev, “Opredelenie razmera blokov mozaiki v iskusstvennom grafite po magnetosoprotivleniiu”, Khimiia tverdogo topliva, 2012, no. 5, 34–38