Features of contrast structure calculation in Cauchy problems
Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 97-109.

Voir la notice de l'article provenant de la source Math-Net.Ru

In stiff Cauchy problems solving, we encounter regions where the solution changes very fast. They are called boundary layers. In non-linear problems they can be numerous and take place not only at the initial moment of time but also at following moments. In the latter case, they are called contrast structures. We have shown that in numerical solving of contrast structure problems the round-off errors can become extremely large. Even digit capacity increasing can not resolve this problem. In this case, approximate analytical methods developed in boundary layer theory turn out to be more effective. As an example of applied task, we have considered a real chemical kinetics problem, namely hydrogen in oxygen combustion. A contrast structure appears during such combustion due to production of transitional chemical components. Consequently, real flame burst takes place not instantly but after some time passes.
Keywords: stiff Cauchy problem, contrast structure, boundary layer, chemical kinetics.
@article{MM_2016_28_10_a7,
     author = {A. A. Belov and N. N. Kalitkin},
     title = {Features of contrast structure calculation in {Cauchy} problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--109},
     publisher = {mathdoc},
     volume = {28},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a7/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
TI  - Features of contrast structure calculation in Cauchy problems
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 97
EP  - 109
VL  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a7/
LA  - ru
ID  - MM_2016_28_10_a7
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%T Features of contrast structure calculation in Cauchy problems
%J Matematičeskoe modelirovanie
%D 2016
%P 97-109
%V 28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a7/
%G ru
%F MM_2016_28_10_a7
A. A. Belov; N. N. Kalitkin. Features of contrast structure calculation in Cauchy problems. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 97-109. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a7/

[1] Hairer E., Norset S. P., Wanner G., Solving ordinary differential equations. Nonstiff problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1991 | MR

[2] Hairer E., Wanner G., Solving ordinary differential equations. Stiff and differential-algebraic problems, Springer-Verlag, Berlin–Heidelberg–New York–London–Paris–Tokyo, 1999 | MR

[3] Vasileva A. B., Butuzov V. F., Nefedov N. N., “Kontrastnye struktury v singuliarno vozmushchennykh zadachakh”, Fundamentalnaia i prikladnaia matematika, 4:3 (1998), 799–851 | Zbl

[4] Belov A. A., Kalitkin N. N., “Problema nelineinosti pri chislennom reshenii sverkhzhestkikh zadach Koshi”, Matematicheskoe modelirovanie, 28:4 (2016), 16–32 | Zbl

[5] Shalashilin V. I., Kuznecov E. B., Metod prodolzheniia resheniia po parametru i nailuchshaia parametrizaciia, Editorial URSS, M., 1999, 224 pp.

[6] Kalitkin N. N., Poshivaylo I. P., “Inverse Ls-stable Runge–Kutta schemes”, Doklady Mathematics, 85:1 (2012), 139–143 | DOI | MR | Zbl

[7] Kalitkin N. N., Poshivaylo I. P., “Computations with inverse Runge–Kutta schemes”, Mathematical Models and Computer Simulations, 6:3 (2014), 272–285 | DOI | MR | Zbl

[8] Belov A. A., Kalitkin N. N., Poshivaylo I. P., “Geometrically-adaptive grids for stiff Cauchy problems”, Doklady Mathematics, 2016 | DOI

[9] Belov A. A., Kalitkin N. N., “Vybor shaga po krivizne dlia zhestkikh zadach Koshi”, Matematicheskoe modelirovanie, 2016

[10] Marchuk G. I., Shaidurov V. V., Povyshenie tochnosti reshenii raznostnykh skhem, Nauka, M., 1979, 320 pp.

[11] Kalitkin N. N., Chislennye metody, Nauka, M., 1978, 512 pp.

[12] Kalitkin N. N., Alshin A. B., Alshina E. A., Rogov B. V., Vychisleniia na kvaziravnomernykh setkah, Fizmatlit, M., 2005, 224 pp.

[13] Poshivaylo I. P., Zhestkie i plokho obuslovlennye nelineinye modeli i metody ikh rashcheta, Dissertaciia na soiskanie uch. stepeni kandidata fiz.-mat. nauk: 05.13.18, M., 2015, 89 pp.

[14] Belov A. A., Kalitkin N. N., Kuzmina L. V., “Modelirovanie khimicheskoi kinetiki v gazakh”, Matematicheskoe modelirovanie, 28:8 (2016), 46–64 | Zbl

[15] Belov A. A., “Paket GACK dlja rascheta khimicheskoi kinetiki s garantirovannoi tochnostiu”, Preprinty IPM im. M. V. Keldysha, 2015, 071, 12 pp. | Zbl