Model of heattransfer in the semi-limited sample from ortotropic material
Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 80-86.

Voir la notice de l'article provenant de la source Math-Net.Ru

The solution of a three-dimensional return problem of heat conductivity for a semi-limited sample from ortotropic material received by methods of integrated transformations of Laplace and Fourier is submitted. The mathematical model allows to define a complex of thermophysical properties of ortotropic materials. Relative errors of determination of heatphysical properties are analysed.
Keywords: mathematical model of three-dimensional thermal process, orthotropic material, direct and return problems of heat transfer, integrated transformation of Laplace, integrated Fourier's cosine transformation, integral characteristics of temperature and heat flow, complex of thermophysical properties.
@article{MM_2016_28_10_a5,
     author = {N. A. Konysheva and G. V. Shishkina and A. A. Churikov},
     title = {Model of heattransfer in the semi-limited sample from ortotropic material},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {80--86},
     publisher = {mathdoc},
     volume = {28},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a5/}
}
TY  - JOUR
AU  - N. A. Konysheva
AU  - G. V. Shishkina
AU  - A. A. Churikov
TI  - Model of heattransfer in the semi-limited sample from ortotropic material
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 80
EP  - 86
VL  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a5/
LA  - ru
ID  - MM_2016_28_10_a5
ER  - 
%0 Journal Article
%A N. A. Konysheva
%A G. V. Shishkina
%A A. A. Churikov
%T Model of heattransfer in the semi-limited sample from ortotropic material
%J Matematičeskoe modelirovanie
%D 2016
%P 80-86
%V 28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a5/
%G ru
%F MM_2016_28_10_a5
N. A. Konysheva; G. V. Shishkina; A. A. Churikov. Model of heattransfer in the semi-limited sample from ortotropic material. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 80-86. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a5/

[1] A. V. Lykov, Teoriia teploprovodnosti, Vysshaia shkola, M., 1967, 599 pp.

[2] L. L. Antonova, A. A. Churikov, “Metod nerazrushaiushchego teplofizicheskogo kontrolia obraztsov malykh geometricheskikh razmerov iz keramicheskikh elektroizoliatsionnykh materialov”, Izmereniia, avtomatizatsiia i modelirovanie v promyshlennosti i nauchnykh issledovaniiakh: Mezhvuzovskii sbornik pod red. G. V. Leonova, Alt. gos. tekhn. un-t BTI, Biisk, 2005, 28–30

[3] F. M. Camia, Traite de thermocinetique impulsionnelle, Dunod, Paris, 1967

[4] H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids, Clarendon Press, Oxford, 1959 | MR

[5] N. A. Konysheva, Razrabotka metoda i ustroistva dlia nerazrushaiushchego kontrolia kompleksa teplofizicheskikh svoistv tverdykh anizotropnykh materialov, Dis. k.t.n.: 05.11.13, TGTU, Tambov, 2011, 144 pp.

[6] N. A. Konysheva, A. A. Churikov, “Matematicheskaia model nerazrushaiushchego teplofizicheskogo kontrolia teplofizicheskikh svoistv ortotropnogo poluogranichennogo obraztsa”, Izmereniia, avtomatizatsiia i modelirovanie v promyshlennosti i nauchnykh issledovaniiakh, Mezhvuzovskii sbornik pod red. G. V. Leonova, Alt. gos. tekhn. un-t BTI, Biisk, 2005, 13–15

[7] S. V. Ponomarev, M. V. Egorov, D. A. Liubimova, “Matematicheskoe modelirovanie pogreshnostei izmereniia teplofizicheskikh svoistv teploizoliatsionnykh materialov metodom ploskogo «mgnovennogo» istochnika teploty”, Metrologiia, 2014, no. 9, 23–35