Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2016_28_10_a4, author = {N. I. Eremeeva}, title = {The generalization of the model of {Rescigno} and {De} {Lisi} immune system reactions in case of multiple tumors of the cylindrical form}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--79}, publisher = {mathdoc}, volume = {28}, number = {10}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a4/} }
TY - JOUR AU - N. I. Eremeeva TI - The generalization of the model of Rescigno and De Lisi immune system reactions in case of multiple tumors of the cylindrical form JO - Matematičeskoe modelirovanie PY - 2016 SP - 65 EP - 79 VL - 28 IS - 10 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a4/ LA - ru ID - MM_2016_28_10_a4 ER -
%0 Journal Article %A N. I. Eremeeva %T The generalization of the model of Rescigno and De Lisi immune system reactions in case of multiple tumors of the cylindrical form %J Matematičeskoe modelirovanie %D 2016 %P 65-79 %V 28 %N 10 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a4/ %G ru %F MM_2016_28_10_a4
N. I. Eremeeva. The generalization of the model of Rescigno and De Lisi immune system reactions in case of multiple tumors of the cylindrical form. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 65-79. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a4/
[1] M. I. Davydov, E. M. Aksel, “Statistika zlokachestvennykh novoobrazovanii v Rossii i stranakh SNG v 2007 g.”, Vestnik RONTH im. N. N. Blokhina RAMN, 20:3 (2009), 8–156
[2] Statistika zabolevaemosti rakom, Meditsinskaia entsiklopediia «Kniga medika», (data obrashcheniia: 2.10.2013) http://www.knigamedika.ru
[3] Iu. M. Romanovskii, N. V. Stepanova, D. S. Chernavskii, Matematicheskaia Biofizika, Nauka, M., 1984, 304 pp.
[4] V. G. Knigavko, M. A. Bondarenko, “Mathematical modeling of oxygen diffusion and consumption in malignant tumor”, Biophysics, 50:3 (2005), 579–583
[5] S. A. Astanin, A. I. Lobanov, “Trekhmernaia model rosta nevaskuliarizirovannoi opukholi v tkani”, Matematika. Kompiuter. Obrazovanie, v. 1, 2005, 759–769
[6] V. A. Slepkov, V. G. Sukhovolsky, Z. G. Khlebopros, “Population dynamics in modeling tumor growth”, Biophysics, 52:4 (2007), 426–431
[7] A. V. Kolobov, A. A. Anashkina, V. V. Gubernov, A. A. Polezhaev, “Matematicheskaia model rosta opukholi s uchetom dikhotomii migrazii i proliferathii”, Compiuternye issledovaniia i modelirovanie, 1:4 (2009), 415–422 | Zbl
[8] I. V. Zhukova, E. P. Kolpak, “Mathematiceskie modeli zlokachestvennoi opukholi”, Vestnik S.-Peterburg. un-ta. Ser. 10. Prikl. matem. Inform., 2014, no. 3, 5–18
[9] D. A. Bratsun, A. P. Zakharov, L. M. Pismen, “Mnogourovnevoe matematicheskoe modelirovanie vozniknoveniia I rosta opukholi v tkani epiteliia”, Compiuternye issledovaniia i modelirovanie, 6:4 (2014), 585–604 | Zbl
[10] M. Gyllenberg, G. Webb, “A nonlinear structured population model of tumour growth with quiescence”, J. Math. Biol., 28 (1990), 671–684 | DOI | MR
[11] M. A. J. Chaplain, J. A. Sherratt, “A new mathematical model for avascular tumor growth”, Journal of Mathematical Biology, 43:4 (2000), 291–312 | MR
[12] H. M. Byrne, C. J. W. Breward, C. E. Lewis, “The role of cell-cell interactions in a two-phase model for avascular tumour growth”, Journal of Mathematical Biology, 45:2 (2001), 125–131 | MR
[13] T. Alarcon, “A cellular automaton model for tumour growth in inhomogeneous environment”, J. Theor. Biol., 225 (2003), 257–274 | DOI | MR
[14] H. M. Byrne, J. R. King, D. L. S. McElwain, “A two-phase model of solid tumor growth”, Appl. Math. Lett., 16 (2003), 567–573 | DOI | MR | Zbl
[15] Y. Kim, M. A. Stolarska, H. G. Othmer, “A hybrid model for tumour spheroid growth in vitro”, Math. Mod. Meth. Appl. Sci., 17 (2007), 1773–1798 | DOI | MR | Zbl
[16] V. S. Shapot, “O proiavleniiakh i mekhanizmakh sistemnogo deistviia na organizm”, Patofiziologiia i eksperimentalnaia terapiia, 1974, no. 3, 3
[17] D. K. Arrowsmith, C. M. Place, Ordinary differential equations: a qualitative approach with applications, Chapman and Hall, London–New York, 1982, 252 pp. | MR | Zbl
[18] G. W. Swan, Some Current Mathematical Topics in Cancer Research, University Microfilms International, MI, 1977
[19] D. Liu, S. Ruan, D. Zhu, “Bifurcation analysis in models of tumor and Immune system interactions”, Discrete and Continuous Dynamical Systems. Series B, 12 (2009), 151–168 | DOI | MR | Zbl