Numerical methods for the problem of traffic flow equilibrium in the Beckmann and the stable dynamic models
Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 40-64

Voir la notice de l'article provenant de la source Math-Net.Ru

In this work we propose new computational methods for transportation equilibrium problems. For Beckmann's equilibrium model we consider Frank–Wolfe algorithm in a view of modern complexity results for this method. For Stable Dynamic model we propose new methods. First approach based on mirror descent scheme with Euclidean prox-structure for dual problem and randomization of a sum trick. Second approach based on Nesterov's smoothing technique of dual problem in form of Dorn–Nesterov and new implementation of randomized block-component gradient descent algorithm.
Keywords: equilibrium transportation models, Nash–Wardrop equilibrium, Beckmann's model, Stable Dynamic model, Frank–Wolfe algorithm, Mirror descent algorithm, dual averaging, randomization, randomized component gradient descent algorithm.
@article{MM_2016_28_10_a3,
     author = {A. V. Gasnikov and P. E. Dvurechensky and Yu. V. Dorn and Yu. V. Maksimov},
     title = {Numerical methods for the problem of traffic flow equilibrium in the {Beckmann} and the stable dynamic models},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {40--64},
     publisher = {mathdoc},
     volume = {28},
     number = {10},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2016_28_10_a3/}
}
TY  - JOUR
AU  - A. V. Gasnikov
AU  - P. E. Dvurechensky
AU  - Yu. V. Dorn
AU  - Yu. V. Maksimov
TI  - Numerical methods for the problem of traffic flow equilibrium in the Beckmann and the stable dynamic models
JO  - Matematičeskoe modelirovanie
PY  - 2016
SP  - 40
EP  - 64
VL  - 28
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2016_28_10_a3/
LA  - ru
ID  - MM_2016_28_10_a3
ER  - 
%0 Journal Article
%A A. V. Gasnikov
%A P. E. Dvurechensky
%A Yu. V. Dorn
%A Yu. V. Maksimov
%T Numerical methods for the problem of traffic flow equilibrium in the Beckmann and the stable dynamic models
%J Matematičeskoe modelirovanie
%D 2016
%P 40-64
%V 28
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2016_28_10_a3/
%G ru
%F MM_2016_28_10_a3
A. V. Gasnikov; P. E. Dvurechensky; Yu. V. Dorn; Yu. V. Maksimov. Numerical methods for the problem of traffic flow equilibrium in the Beckmann and the stable dynamic models. Matematičeskoe modelirovanie, Tome 28 (2016) no. 10, pp. 40-64. http://geodesic.mathdoc.fr/item/MM_2016_28_10_a3/