Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_9_a8, author = {A. A. Belov and N. N. Kalitkin and L. V. Kuzmina}, title = {Comparison of highly stable forms of iterative conjugate directions methods}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {110--136}, publisher = {mathdoc}, volume = {27}, number = {9}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a8/} }
TY - JOUR AU - A. A. Belov AU - N. N. Kalitkin AU - L. V. Kuzmina TI - Comparison of highly stable forms of iterative conjugate directions methods JO - Matematičeskoe modelirovanie PY - 2015 SP - 110 EP - 136 VL - 27 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a8/ LA - ru ID - MM_2015_27_9_a8 ER -
A. A. Belov; N. N. Kalitkin; L. V. Kuzmina. Comparison of highly stable forms of iterative conjugate directions methods. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 110-136. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a8/
[1] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka. Fizmatlit, M., 1978, 592 pp. | MR
[2] A. A. Boltnev, O. A. Kacher, N. N. Kalitkin, “Logarithmically convergent relaxation count”, Doklady Mathematics, 72:2, 806–809 | MR | Zbl
[3] N. N. Kalitkin, A. A. Belov, “Analogue of the Richardson method for logarithmically converging time marching”, Doklady Mathematics, 88:2, 596–600 | MR | Zbl
[4] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Lan, SPb., 2009, 734 pp.
[5] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987, 630 pp. | MR
[6] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 430 pp. | MR
[7] E. Craig, “The N-step iteration procedures”, J. Math. and Phys., 34:1 (1955), 64–73 | MR | Zbl
[8] A. A. Abramov, V. I. Ulianova, L. F. Iukhno, “On the application of Craig's method to the solution of linear equations with inexact initial data”, Comput. Math. Math. Phys., 42:12 (2002), 1693–1700 | MR | Zbl
[9] N. N. Kalitkin, L. V. Kuz'mina, “Improved form of the conjugate gradient method”, Mathematical Models and Computer Simulations, 4:1 (2012), 68–81 | MR | Zbl
[10] N. N. Kalitkin, L. V. Kuz'mina, “On the Craig method convergence for linear algebraic systems”, Mathematical Models and Computer Simulations, 4:5 (2012), 509–526 | MR | MR | Zbl
[11] N. N. Kalitkin, L. V. Kuz'mina, “Improved Forms of Iterative Methods for Systems of Linear Algebraic Equations”, Dokl. Math., 88:1 (2013), 489–494 | MR | Zbl
[12] N. N. Kalitkin, L. V. Kuz'mina, “One-Step Truncated Gradient Descents”, Mathematical Models and Computer Simulations, 7:1 (2015), 13–23 | MR
[13] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003, 528 pp. | MR | Zbl
[14] Matlab Documentation Center, http://www.mathworks.com/help/matlab/index.html
[15] G. Korn, T. Korn, Mathematical handbook for scientists and engineers, McGraw Hill Book Company, NY, 1968, 832 pp. | MR
[16] E. A. Al'shina, A. A. Boltnev, O. A. Kacher, “Empiricheskoe uluchshenie prosteishikh grdientnykh metodov”, Matematicheskoe modelirovanie, 17:6 (2005), 43–57 | MR | Zbl