Comparison of highly stable forms of iterative conjugate directions methods
Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 110-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Simple and highly stable formulae for conjugate directions methods in case of symmetric matrices and for symmetrized conjugate gradients in case of non-symmetric matrices have been proposed. These methods are compared with highly stable forms of conjugate gradients method and Craig method. It is shown that recurrent algorithm versions are necessary for high round-off stability to be achieved. Conjugate residual method turned out to be the most reliable and fast for symmetric sign-definite and sign-alternating matrices. Symmetrized conjugate gradients method delivered the best results for non-symmetric matrices. These two methods are recommended for developing standard programs. Also a reliable criterion for breaking the count in case of reaching round-off background is constructed.
Keywords: systems of linear algebraic equations, iterative methods
Mots-clés : sparse matrices, conjugate gradients descents.
@article{MM_2015_27_9_a8,
     author = {A. A. Belov and N. N. Kalitkin and L. V. Kuzmina},
     title = {Comparison of highly stable forms of iterative conjugate directions methods},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {110--136},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a8/}
}
TY  - JOUR
AU  - A. A. Belov
AU  - N. N. Kalitkin
AU  - L. V. Kuzmina
TI  - Comparison of highly stable forms of iterative conjugate directions methods
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 110
EP  - 136
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a8/
LA  - ru
ID  - MM_2015_27_9_a8
ER  - 
%0 Journal Article
%A A. A. Belov
%A N. N. Kalitkin
%A L. V. Kuzmina
%T Comparison of highly stable forms of iterative conjugate directions methods
%J Matematičeskoe modelirovanie
%D 2015
%P 110-136
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_9_a8/
%G ru
%F MM_2015_27_9_a8
A. A. Belov; N. N. Kalitkin; L. V. Kuzmina. Comparison of highly stable forms of iterative conjugate directions methods. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 110-136. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a8/

[1] A. A. Samarskii, E. S. Nikolaev, Metody resheniia setochnykh uravnenii, Nauka. Fizmatlit, M., 1978, 592 pp. | MR

[2] A. A. Boltnev, O. A. Kacher, N. N. Kalitkin, “Logarithmically convergent relaxation count”, Doklady Mathematics, 72:2, 806–809 | MR | Zbl

[3] N. N. Kalitkin, A. A. Belov, “Analogue of the Richardson method for logarithmically converging time marching”, Doklady Mathematics, 88:2, 596–600 | MR | Zbl

[4] D. K. Faddeev, V. N. Faddeeva, Vychislitelnye metody lineinoi algebry, Lan, SPb., 2009, 734 pp.

[5] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987, 630 pp. | MR

[6] A. A. Samarskii, A. V. Gulin, Chislennye metody, Nauka, M., 1989, 430 pp. | MR

[7] E. Craig, “The N-step iteration procedures”, J. Math. and Phys., 34:1 (1955), 64–73 | MR | Zbl

[8] A. A. Abramov, V. I. Ulianova, L. F. Iukhno, “On the application of Craig's method to the solution of linear equations with inexact initial data”, Comput. Math. Math. Phys., 42:12 (2002), 1693–1700 | MR | Zbl

[9] N. N. Kalitkin, L. V. Kuz'mina, “Improved form of the conjugate gradient method”, Mathematical Models and Computer Simulations, 4:1 (2012), 68–81 | MR | Zbl

[10] N. N. Kalitkin, L. V. Kuz'mina, “On the Craig method convergence for linear algebraic systems”, Mathematical Models and Computer Simulations, 4:5 (2012), 509–526 | MR | MR | Zbl

[11] N. N. Kalitkin, L. V. Kuz'mina, “Improved Forms of Iterative Methods for Systems of Linear Algebraic Equations”, Dokl. Math., 88:1 (2013), 489–494 | MR | Zbl

[12] N. N. Kalitkin, L. V. Kuz'mina, “One-Step Truncated Gradient Descents”, Mathematical Models and Computer Simulations, 7:1 (2015), 13–23 | MR

[13] Y. Saad, Iterative methods for sparse linear systems, SIAM, 2003, 528 pp. | MR | Zbl

[14] Matlab Documentation Center, http://www.mathworks.com/help/matlab/index.html

[15] G. Korn, T. Korn, Mathematical handbook for scientists and engineers, McGraw Hill Book Company, NY, 1968, 832 pp. | MR

[16] E. A. Al'shina, A. A. Boltnev, O. A. Kacher, “Empiricheskoe uluchshenie prosteishikh grdientnykh metodov”, Matematicheskoe modelirovanie, 17:6 (2005), 43–57 | MR | Zbl