Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_9_a6, author = {N. N. Fimin and Yu. N. Orlov and V. M. Chechetkin}, title = {Thermodynamic properties of vortex systems}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {81--88}, publisher = {mathdoc}, volume = {27}, number = {9}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a6/} }
N. N. Fimin; Yu. N. Orlov; V. M. Chechetkin. Thermodynamic properties of vortex systems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 81-88. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a6/
[1] L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento Suppl., 6 (1949), 279–289 | MR
[2] D. Montgomery, G. Joyce, “Statistical mechanics of “negative temperature” states”, Phys. Fluids, 17 (1974), 1139–1145 | MR
[3] C. Marchioro, M. Pulvirenti, Vortex methods in two-dimensional fluid dynamics, Springer-Verlag, Berlin–Heidelberg–N.Y.–Tokyo, 1984, 137 pp. | MR | Zbl
[4] P. H. Chavanis, “Statistical mechanics of two-dimensional vortices and stellar systems”, Dynamics and thermodynamics of systems with long range interactions, Lect. Notes Phys., 602, eds. T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Springer, Berlin–New York–Heidelberg, 2002, 492 | MR
[5] J.-Z. Wu, H.-Y. Ma, M.-D. Zhou, Vorticity and vortex dynamics, Springer-Verlag, Berlin–Heidelberg–New York, 2006, 776 pp.
[6] R. S. Ellis, B. Turkington, “Analysis of statistical equilibrium models of geostrophic turbulence”, Journ. Appl. Math. and Stochastic Anal., 15:4 (2002), 327–347 | MR
[7] M. K.-H. Kiessling, J. L. Lebowitz, “The microcanonical point vortex ensemble: beyond equivalence”, Letters in Math. Phys., 42 (1997), 43–56 | MR
[8] Y. B. Pointin, T. S. Lundgren, “Statistical mechanics of two-dimensional vortices in a bounded container”, Phys. Fluids, 19:10 (1976), 1459–1470 | Zbl
[9] F. Weinhold, Classical and geometrical theory of chemical and phase thermodynamics, John Wiley and Sons, Hoboken, New Jersey, 2009, 490 pp.
[10] S. Amari, Differential-geometrical methods in statistics, Springer-Verlag, Berlin–Heidelberg–Hong Kong, 1985, 296 pp. | MR | Zbl
[11] M. Mijatovic, V. Veselinovic, K. Trencevski, “Differential geometry of equilibrium thermodynamics”, Phys. Rev. A, 35:4 (1987), 1863–1867 | MR
[12] G. C. McVittie, General relativity and cosmology, Chapman and Hall Ltd., London, 1956, 198 pp. | MR