Thermodynamic properties of vortex systems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 81-88.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the thermodynamic properties of Onsager's vortices system on the plane. Geometrization of thermodynamics is carried out for vortex system, the corresponding concepts are entered. The main properties are investigated for Gibbs surface corresponding to considered system.
Mots-clés : Onsager vortices
Keywords: thermodynamic properties, negative temperature, Joyce–Montgomery equation, geometrization of thermodynamics.
@article{MM_2015_27_9_a6,
     author = {N. N. Fimin and Yu. N. Orlov and V. M. Chechetkin},
     title = {Thermodynamic properties of vortex systems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {81--88},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a6/}
}
TY  - JOUR
AU  - N. N. Fimin
AU  - Yu. N. Orlov
AU  - V. M. Chechetkin
TI  - Thermodynamic properties of vortex systems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 81
EP  - 88
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a6/
LA  - ru
ID  - MM_2015_27_9_a6
ER  - 
%0 Journal Article
%A N. N. Fimin
%A Yu. N. Orlov
%A V. M. Chechetkin
%T Thermodynamic properties of vortex systems
%J Matematičeskoe modelirovanie
%D 2015
%P 81-88
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_9_a6/
%G ru
%F MM_2015_27_9_a6
N. N. Fimin; Yu. N. Orlov; V. M. Chechetkin. Thermodynamic properties of vortex systems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 81-88. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a6/

[1] L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento Suppl., 6 (1949), 279–289 | MR

[2] D. Montgomery, G. Joyce, “Statistical mechanics of “negative temperature” states”, Phys. Fluids, 17 (1974), 1139–1145 | MR

[3] C. Marchioro, M. Pulvirenti, Vortex methods in two-dimensional fluid dynamics, Springer-Verlag, Berlin–Heidelberg–N.Y.–Tokyo, 1984, 137 pp. | MR | Zbl

[4] P. H. Chavanis, “Statistical mechanics of two-dimensional vortices and stellar systems”, Dynamics and thermodynamics of systems with long range interactions, Lect. Notes Phys., 602, eds. T. Dauxois, S. Ruffo, E. Arimondo, M. Wilkens, Springer, Berlin–New York–Heidelberg, 2002, 492 | MR

[5] J.-Z. Wu, H.-Y. Ma, M.-D. Zhou, Vorticity and vortex dynamics, Springer-Verlag, Berlin–Heidelberg–New York, 2006, 776 pp.

[6] R. S. Ellis, B. Turkington, “Analysis of statistical equilibrium models of geostrophic turbulence”, Journ. Appl. Math. and Stochastic Anal., 15:4 (2002), 327–347 | MR

[7] M. K.-H. Kiessling, J. L. Lebowitz, “The microcanonical point vortex ensemble: beyond equivalence”, Letters in Math. Phys., 42 (1997), 43–56 | MR

[8] Y. B. Pointin, T. S. Lundgren, “Statistical mechanics of two-dimensional vortices in a bounded container”, Phys. Fluids, 19:10 (1976), 1459–1470 | Zbl

[9] F. Weinhold, Classical and geometrical theory of chemical and phase thermodynamics, John Wiley and Sons, Hoboken, New Jersey, 2009, 490 pp.

[10] S. Amari, Differential-geometrical methods in statistics, Springer-Verlag, Berlin–Heidelberg–Hong Kong, 1985, 296 pp. | MR | Zbl

[11] M. Mijatovic, V. Veselinovic, K. Trencevski, “Differential geometry of equilibrium thermodynamics”, Phys. Rev. A, 35:4 (1987), 1863–1867 | MR

[12] G. C. McVittie, General relativity and cosmology, Chapman and Hall Ltd., London, 1956, 198 pp. | MR