Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_9_a4, author = {O. N. Naumov}, title = {Mathematical model of space tether system in form of the {Hamilton} equations}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {65--72}, publisher = {mathdoc}, volume = {27}, number = {9}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a4/} }
O. N. Naumov. Mathematical model of space tether system in form of the Hamilton equations. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 65-72. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a4/
[1] V. V. Beletskii, Dinamika kosmicheskikh trosovykh sistem, Nauka, M., 1990, 336 pp.
[2] A. P. Alpatov, Dinamika kosmicheskikh sistem s trosovymi i sharnirnymi soedineniiami, NITs «Reguliarnaia i khaoticheskaia dinamika», Institut kompiuternykh issledovanii, M.–Izhevsk, 2007, 560 pp.
[3] P. Williams, A. Hyslop, M. Stelzer, M. Kruijff, “YES2 optimal trajectories in presence of eccentricity and aerodynamic drag”, IAC-06 (Valencia, 2006), Acta Astronautica, 64, no. 7–8, 2009, IAC-06-D2.3.04, 745–769
[4] P. Williams, A. Hyslop, M. Kruijff, “Deployment control for the YES2 Tether-assisted Re-entry Mission”, Advance in the Astronautical Sciences, 123:2 (2006), 1101–1120
[5] V. S. Aslanov, “Uravneniia dvizheniia orbitalnoi trosovoi sistemy s uchetom kolebanii kosmicheskogo apparata”, Vestnik SGAU, 2008, no. 1, 16–22
[6] O. N. Naumov, “Analiz vliianiia staticheskoi i dinamicheskoi asimmetrii na vrashchatelnoe dvizhenie kapsuly pri upravliaemom razvertyvanii trosovoi sistem”, Trudy MAI, 43 (2011)
[7] Iu. M. Zabolotnov, O. N. Naumov, “Motion of a Descent Capsule Relative to Its Center of Mass when Deploying the Orbital Tether System”, Cosmic Research, 50:2 (2012), 177–187
[8] S. A. Ishkov, C. A. Naumov, “Upravlenie razvertyvaniem orbitalnoi trosovoi sistemy”, Vestnik SGAU, 2006, no. 1, 81–90 | MR