Mathematical model of space tether system in form of the Hamilton equations
Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 65-72.

Voir la notice de l'article provenant de la source Math-Net.Ru

The space tether system is considered here, this system consists of a base spacecraft, descent capsule and elastic tether. The equations of motion of the system in the Hamiltonian form are presented in this paper. The analysis of the process of managed deployment rope on board of the spacecraft is given. The present mathematical model can be used for design calculations in the dynamics of space tethered systems.
Keywords: space tether system, Hamilton's equations, generalized coordinates, generalized momentum.
@article{MM_2015_27_9_a4,
     author = {O. N. Naumov},
     title = {Mathematical model of space tether system in form of the {Hamilton} equations},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {65--72},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a4/}
}
TY  - JOUR
AU  - O. N. Naumov
TI  - Mathematical model of space tether system in form of the Hamilton equations
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 65
EP  - 72
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a4/
LA  - ru
ID  - MM_2015_27_9_a4
ER  - 
%0 Journal Article
%A O. N. Naumov
%T Mathematical model of space tether system in form of the Hamilton equations
%J Matematičeskoe modelirovanie
%D 2015
%P 65-72
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_9_a4/
%G ru
%F MM_2015_27_9_a4
O. N. Naumov. Mathematical model of space tether system in form of the Hamilton equations. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 65-72. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a4/

[1] V. V. Beletskii, Dinamika kosmicheskikh trosovykh sistem, Nauka, M., 1990, 336 pp.

[2] A. P. Alpatov, Dinamika kosmicheskikh sistem s trosovymi i sharnirnymi soedineniiami, NITs «Reguliarnaia i khaoticheskaia dinamika», Institut kompiuternykh issledovanii, M.–Izhevsk, 2007, 560 pp.

[3] P. Williams, A. Hyslop, M. Stelzer, M. Kruijff, “YES2 optimal trajectories in presence of eccentricity and aerodynamic drag”, IAC-06 (Valencia, 2006), Acta Astronautica, 64, no. 7–8, 2009, IAC-06-D2.3.04, 745–769

[4] P. Williams, A. Hyslop, M. Kruijff, “Deployment control for the YES2 Tether-assisted Re-entry Mission”, Advance in the Astronautical Sciences, 123:2 (2006), 1101–1120

[5] V. S. Aslanov, “Uravneniia dvizheniia orbitalnoi trosovoi sistemy s uchetom kolebanii kosmicheskogo apparata”, Vestnik SGAU, 2008, no. 1, 16–22

[6] O. N. Naumov, “Analiz vliianiia staticheskoi i dinamicheskoi asimmetrii na vrashchatelnoe dvizhenie kapsuly pri upravliaemom razvertyvanii trosovoi sistem”, Trudy MAI, 43 (2011)

[7] Iu. M. Zabolotnov, O. N. Naumov, “Motion of a Descent Capsule Relative to Its Center of Mass when Deploying the Orbital Tether System”, Cosmic Research, 50:2 (2012), 177–187

[8] S. A. Ishkov, C. A. Naumov, “Upravlenie razvertyvaniem orbitalnoi trosovoi sistemy”, Vestnik SGAU, 2006, no. 1, 81–90 | MR