Numerical simulation of the energy deposition influence on the base flow
Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 33-48.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the frame of the Reynolds equations with SST turbulence model the numerical simulation of the energy input into the stream in front of the bow and the side surface influence on the base flow has been performed. For the regimes considered it has been shown that the energy input before the bow, resulting in a significant reduction of wave resistance has a little effect on the base pressure value. This ensures high efficiency of energy input as a mean of drag force reducing. For the considered regimes it has been shown that the investment of energy around the lateral surface leads to a small increase in base pressure.
Mots-clés : RANS
Keywords: SST turbulence model, energy input, drag reduction, base pressure.
@article{MM_2015_27_9_a2,
     author = {I. Yu. Kudryashov and A. E. Lutsky and Ya. V. Khankhasaeva},
     title = {Numerical simulation of the energy deposition influence on the base flow},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {33--48},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a2/}
}
TY  - JOUR
AU  - I. Yu. Kudryashov
AU  - A. E. Lutsky
AU  - Ya. V. Khankhasaeva
TI  - Numerical simulation of the energy deposition influence on the base flow
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 33
EP  - 48
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a2/
LA  - ru
ID  - MM_2015_27_9_a2
ER  - 
%0 Journal Article
%A I. Yu. Kudryashov
%A A. E. Lutsky
%A Ya. V. Khankhasaeva
%T Numerical simulation of the energy deposition influence on the base flow
%J Matematičeskoe modelirovanie
%D 2015
%P 33-48
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_9_a2/
%G ru
%F MM_2015_27_9_a2
I. Yu. Kudryashov; A. E. Lutsky; Ya. V. Khankhasaeva. Numerical simulation of the energy deposition influence on the base flow. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 33-48. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a2/

[1] V. Chernikov, S. Dvinin, A. Ershov, V. Shibkov, I. Timofeev, D. Van Wie, “Experimental and theoretical research of DC transversal gas discharge in a supersonic gas flow”, Proceedings of the 3rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, ed. V. A. Bityurin, IVTAN, M., 2001, 129–134

[2] G. I. Mishin, A. I. Klimov, A. Iu. Gridin, “Prodolnyi elektrichtskii razriad v sverkhzvukovom potoke gaza”, Pisma v ZHTF, 18:15 (1992), 86–92

[3] V. M. Fomin, A. V. Lebedev, A. I. Ivanchenko, “Space-Energy Characteristics of Electric Discharge in Supersonic Gas Flow”, Physics-Doklady, 43:7 (1998), 440–443 | Zbl

[4] V. Skvortsov, Yu. Kuznetsov, V. Litvinov, B. Efimov, V. Markin, A. Uspenskii, A. Khvostov, A. Golovnja, L. Vasilenko, P. Kuzjaev, A. Klimov, S. Leonov, “Investigation of aerodynamic effects at the electric discharge creation on the models of different geometry”, Proceedings of the 2rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, ed. V. A. Bityurin, IVTAN, M., 2000, 102–106

[5] L. P. Grachev, I. I. Esakov, K. V. Khodataev, “Microwave streamer discharge in a supersonic air flow”, Technical Physics, 44:11 (1999), 1271–1275

[6] Yu. F. Kolesnichenko, V. G. Brovkin, O. A. Azarova, V. G. Grudnitsky, V. A. Laskov, I. Ch. Mashek, “MW energy deposition for aerodynamic application”, 41st Aerospace Science Meeting and Exhibit (Reno, Nevada, USA, 6–9 Jan. 2003), AIAA Paper No 2003-361, 11 pp.

[7] V. M. Shibkov, A. V. Chernikov, V. A. Chernikov, A. P. Ershov, L. V. Shibkova, I. B. Timofeev, D. A. Vinogradov, A. V. Voskanyan, “Surface microwave discharge in supersonic airflow”, Proceedings of the 2rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, ed. V. A. Bityurin, IVTAN, 2000, 163–168

[8] P. K. Tretyakov, A. F. Garanin, G. N. Grachev, V. L. Krainev, A. G. Ponomarenko, V. N. Tishchenko, V. I. Yakovlev, “Control of Supersonic Flow around Bodies by Means of High-Power Recurrent Optical Breakdown”, Physics-Doklady, 41:11 (1996), 566

[9] S. Leonov, V. Bityurin, A. Yuriev, S. Pirogov, B. Zhukov, “Problems in energetic method of drag reduction and flow/flight control”, 41st Aerospace Science Meeting and Exhibit (Reno, Nevada, USA, 6–9 Jan. 2003), AIAA Paper No 2003-35, 8 pp.

[10] P. Tretyakov, “Supersonic flow around axisymmetric bodies with external supply of mass and energy”, Proceedings of the 2rd Workshop on Magneto-Plasma Aerodynamics in Aerospace Applications, ed. V. A. Bityurin, IVTAN, M., 2000, 128–132

[11] G. G. Chernyi, Gazovaia dinamika, Uchebnik dlia universitetov I vuzov, Nauka, M., 1988, 424 pp.

[12] P. Iu. Georgievskii, V. A. Levin, “Sverkhzvukovoe obtekanie tel pri nalichii vneshnikh istochnikov teplovydeleniia”, Pisma v ZHTF, 14:8 (1988), 684–687

[13] P. Yu. Georgievskii, V. A. Levin, “Control of the Flow Past Bodies Using Localized Energy Addition to the Supersonic Oncoming Flow”, Fluid Dynamics, 38:5 (2003), 794–805

[14] V. N. Zudov, P. K. Tretyakov, A. V. Tupikin, V. I. Yakovlev, “Supersonic Flow Past a Thermal Source”, Fluid Dynamics, 38:5 (2003), 782–793 | Zbl

[15] V. P. Gordeev, A. V. Krasil'nikov, V. I. Lagutin, V. N. Otmennikov, “Experimental study of the possibility of reducing supersonic drag by employing plasma technology”, Fluid Dynamics, 31:2 (1996), 313–317

[16] V. A. Levin, V. G. Gromov, N. E. Afonina, “Numerical analysis of the effect of local energy supply on the aerodynamic drag and heat transfer of a spherically blunted body in a supersonic air flow”, Journal of Applied Mechanics and Technical Physics, 41:5 (2000), 915–922 | Zbl

[17] A. I. Zubkov, A. F. Garanin, V. F. Safronov, L. D. Sukhanovskaya, P. K. Tretyakov, “Supersonic flow past an axisymmetric body with combustion in separation zones at the body nose and base”, Thermophysics and Aeromechanics, 12:1 (2005), 1–12 | MR

[18] P. K. Chang, Separation of Flow, Pergamon, New York, 1970 | Zbl

[19] A. I. Shvets, I. T. Shvets, Gazodinamika blizhnego sleda, Naukova dumka, Kiev, 1976

[20] L. V. Gogish, T. Iu. Stepanov, Turbulentnye otryvnye techeniia, Nauka, M., 1979

[21] B. N. Dan'kov, A. P. Kosenko, V. N. Kulikov, V. N. Otmennikov, “Wave disturbances in transonic separated flows”, Fluid Dynamics, 41:6 (2006), 992–1003 | MR

[22] I. Yu. Kudryashov, A. E. Lutsky, “Mathematical simulation of turbulent separated transonic flows around the bodies of revolution”, Mathematical Models and Computer Simulations, 3:6 (2011), 690–696 | Zbl

[23] O. B. Larin, V. A. Levin, “Effect of energy supply to a gas on laminar boundary layer separation”, Journal of Applied Mechanics and Technical Physics, 51:1 (2010), 11–15 | Zbl

[24] A. A. Zheltovodov, E. A. Pimonov, “Numerical simulation of an energy deposition zone in quiescent air and in a supersonic flow under the conditions of interaction with a normal shock”, Technical Physics, 58:2 (2013), 170–184 | MR

[25] F. Simon, S. Deck, P. Guillen, “Reynolds-averaged Navier–Stokes/large-eddy simulations of supersonic base flow”, AIAA journal, 44:11 (2006)

[26] F. R. Menter, Zonal two-equation $k-\omega$ turbulence models for aerodynamic flows, AIAAPaper No 1993-2906

[27] P. Bradshaw, D. H. Ferriss, N. P. Atwell, “Calculation of boundary layer development using the turbulent energy equation”, J. Fluid Mech., 28 (1967), 593–616