Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_9_a1, author = {O. Yu. Milyukova and V. F. Tishkin}, title = {A multigrid method for the heat equation with discontinuous coefficients with the special choice of grids}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {17--32}, publisher = {mathdoc}, volume = {27}, number = {9}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a1/} }
TY - JOUR AU - O. Yu. Milyukova AU - V. F. Tishkin TI - A multigrid method for the heat equation with discontinuous coefficients with the special choice of grids JO - Matematičeskoe modelirovanie PY - 2015 SP - 17 EP - 32 VL - 27 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a1/ LA - ru ID - MM_2015_27_9_a1 ER -
%0 Journal Article %A O. Yu. Milyukova %A V. F. Tishkin %T A multigrid method for the heat equation with discontinuous coefficients with the special choice of grids %J Matematičeskoe modelirovanie %D 2015 %P 17-32 %V 27 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/MM_2015_27_9_a1/ %G ru %F MM_2015_27_9_a1
O. Yu. Milyukova; V. F. Tishkin. A multigrid method for the heat equation with discontinuous coefficients with the special choice of grids. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 17-32. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a1/
[1] A. A. Samarskii, The Theory of Difference Schemes, Marcel Dekker, New York, 2001 | MR | MR | Zbl
[2] N. S. Bakhvalov, N. P. Zhidkov, G. M. Kobelkov, Chislennye metody, Nauka, M., 1987, 599 pp. | MR
[3] R. P. Fedorenko, “Relaksatsyonnyi metod resheniia raznostnykh ellipticheskikh uravnenii”, Zh. Vychisl. Mat. i Mat. Fiz., 1:5 (1961), 922–927 | MR | Zbl
[4] R. P. Fedorenko, “Skorost skhodimosti odnogo iteratsyonnogo metoda”, Zh. Vychisl. Mat. i Mat. Fiz., 4:3 (1964), 227–235
[5] N. S. Bakhvalov, “O skhodimosti odnogo relaksatsyonnogo metoda dlia ellipticheskjgo operatora s ectestvennymi ogranicheniiami”, Zh. Vychisl. Mat. i Mat. Fiz., 6:5 (1966), 101–135 | Zbl
[6] G. P. Astrahantsev, “Ob odnom relaksatsionnom metode”, Zh. Vychisl. Mat. i Mat. Fiz., 11:2 (1971), 439–448 | MR | Zbl
[7] A. Brandt, “Multi-level adaptive solutions to boundary value problems”, Math. Comp., 31 (1977), 333–390 | MR | Zbl
[8] W. Hackbusch, Multi-grid Methods and Applications, Springer, Berlin–Heidelberg, 1985, 773 pp. | Zbl
[9] V. V. Shaidurov, Mnogosetochnye metody konechnykh elementov, Nauka, M., 1989, 288 pp. | MR
[10] Yu. V. Vasilevskii, M. A. Olshanskii, Kratkii kurs po mnogosetochnym metodam i metodam dekompozitsii oblasti, MGU im. M. V. Lomonosova, fak. VMiK, M., 2007, 102 pp.
[11] A. Brandt, S. F. McCormick, J. W. Ruge, “Algebraic multigrid (AMG) for sparce matrix equations”, Sparsity and Its Applications, ed. D. J. Evans, Cambridge University Press, Cambridge, UK, 1985, 257–284 | MR
[12] K. Stüben, “An introduction to algebraic multigrid”, Multigrid, Academic press, San Diego, CA, 2001, 413–532
[13] Y. Notey, “An aggregation-based algebraic multigrid method”, Electronic Transaction on Numerical Analysis, 37 (2010), 123–146 | MR
[14] J. H. Bramble, J. E. Pasciak, J. Xu, “The analysis of multigrid algorithms with nonnested spaces or noninherited quadratic forms”, Math. Comp., 56 (1991), 1–34 | MR | Zbl
[15] M. E. Ladonkina, O. Yu. Milyukova, V. F. Tishkin, “Numerical Algorithm for Solving Diffusion-Type Equations on the Basis of Multigrid Metods”, Comp. Math. and Math. Ph., 50:8 (2010), 1367–1390 | MR | Zbl
[16] O. Milyukova, M. Ladonkina, V. Tishkin, “A numerical method for solving parabolic equations based on the use of a multigrid method”, International Journal of Numerical Analysis Modeling, Series B, 2:2–3 (2012), 183–199 | MR
[17] O. Yu. Milyukova, V. F. Tishkin, “Chislennyi metod resheniia uravneniia teploprovodnosti na treugolnykh setkakh na osnove mnogosetochnogo metoda”, Keldysh Institute preprints, 2011, 029, 16 pp.
[18] O. Yu. Milyukova, V. F. Tishkin, “Chislennyi metod resheniia uravneniia teploprovodnosti s razryvnym koeffitsientom na osnove mnogosetochnogo metoda”, Keldysh Institute preprints, 2013, 064, 19 pp. | Zbl
[19] Y. Saad, Iterative methods for sparse linear systems, PWS Publishing Co., Int. Tompson Publ. Co., 1995, 447 pp.