Account of longitudinal flow inhomogeneity in modeling of turbulent mixing layers and jets
Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 3-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Description of jet flows in the frame of Reynolds equations closed by SSG/LRR-$\omega$ differential Reynolds stress model is considered. The need for turbulent diffusion coefficients adjustment and taking into account the longitudinal inhomogeneity of jet flows is shown. Turbulent diffusion coefficients are calibrated using temporal mixing layer data. An extra source term accounting the longitudinal flow inhomogeneity is proposed which approaches the velocity profile of the mixing layer behind the step and the potential core length of free jets to the experimental data. The results of subsonic free plane jet computations in the frame of full Reynolds equations closed by the modified model are presented, and significant improvement in the description of this flow is demonstrated.
Keywords: turbulence model, mixing layer
Mots-clés : jet.
@article{MM_2015_27_9_a0,
     author = {A. I. Troshin},
     title = {Account of longitudinal flow inhomogeneity in modeling of turbulent mixing layers and jets},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--16},
     publisher = {mathdoc},
     volume = {27},
     number = {9},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_9_a0/}
}
TY  - JOUR
AU  - A. I. Troshin
TI  - Account of longitudinal flow inhomogeneity in modeling of turbulent mixing layers and jets
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 3
EP  - 16
VL  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_9_a0/
LA  - ru
ID  - MM_2015_27_9_a0
ER  - 
%0 Journal Article
%A A. I. Troshin
%T Account of longitudinal flow inhomogeneity in modeling of turbulent mixing layers and jets
%J Matematičeskoe modelirovanie
%D 2015
%P 3-16
%V 27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_9_a0/
%G ru
%F MM_2015_27_9_a0
A. I. Troshin. Account of longitudinal flow inhomogeneity in modeling of turbulent mixing layers and jets. Matematičeskoe modelirovanie, Tome 27 (2015) no. 9, pp. 3-16. http://geodesic.mathdoc.fr/item/MM_2015_27_9_a0/

[1] W. A. Engblom, N. J. Georgiadis, A. Khavaran, “Investigation of variable-diffusion turbulence model correction for round jets”, 11th AIAA/CEAS Aeroacoustics Conference (23–25 May 2005, Monterey, California, USA), AIAA Paper 2005-3085 | Zbl

[2] V. Vlasenko, S. Bosniakov, S. Mikhailov, A. Morozov, A. Troshin, “Computational approach for investigation of thrust and acoustic performances of present-day nozzles”, Progress in Aerospace Sciences, 46:4 (2010), 141–197

[3] A. I. Troshin, “A turbulence model with variable coefficients for calculating mixing layers and jets”, Fluid Dynamics, 47:3 (2012), 320–328 | MR | Zbl

[4] R.-D. Cécora, B. Eisfield, A. Probst, S. Crippa, R. Radespiel, “Differential Reynolds stress modeling for aeronautics”, 50th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition (09–12 January 2012, Nashville, Tennessee, USA), AIAA Paper 2012-0465

[5] F. R. Menter, M. Kuntz, R. Langtry, “Ten years of industrial experience with the SST turbulence model”, Turbulence, Heat and Mass Transfer, 4 (2003), 625–632

[6] C. G. Speziale, S. Sarkar, T. B. Gatski, “Modelling the pressure-strain correlation of turbulence: an invariant dynamical systems approach”, Journal of Fluid Mechanics, 227 (1991), 245–272 | Zbl

[7] D. C. Wilcox, Turbulence modeling for CFD, 2$^{\mathrm{nd}}$ edition, DCW Industries, 1998, 540 pp.

[8] S. B. Pope, Turbulent flows, Cambridge University Press, 2000, 802 pp. | MR | Zbl

[9] A. El Baz, T. J. Craft, N. Z. Ince, B. E. Launder, “On the adequacy of the thin-shear-flow equations for computing turbulent jets in stagnant surroundings”, International Journal of Heat and Fluid Flow, 14:2 (1993), 164–169

[10] J. H. Bell, R. D. Mehta, “Development of a two-stream mixing layer from tripped and untripped boundary layers”, AIAA Journal, 28:12 (1990), 2034–2042

[11] J. R. Cho, M. K. Chung, “A $k$-$\varepsilon$-$\gamma$ equation turbulence model”, Journal of Fluid Mechanics, 237 (1992), 301–322 | Zbl

[12] S. V. Mikhaylov, Programma, realizuiushchaia zonnyi podkhod, dlia rascheta nestatsionarnogo obtekaniia viazkim potokom turbulentnogo gaza slozhnykh aerodinamicheskih form, vkliuchaia krylo s mekhanizatsiey (ZEUS), Svidetelstvo o gosudarstvennoy registratsii programmy dlia EVM No 2013610172 ot 9 ianvaria 2013 goda, Reestr programm dlia EVM

[13] V. V. Vlasenko, “O matematicheskom podkhode i printsipakh postroeniia chislennykh metodologii dlia paketa prikladnykh program EWT-TsAGI”, Trudy TsAGI, 2671 (2007), 20–85 | MR