Resonant properties of superparamagnetic materials for small amplitudes of the periodic field
Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 96-110.

Voir la notice de l'article provenant de la source Math-Net.Ru

Calculations of the dynamic susceptibility for the ensemble of ferromagnetic single-domain particles (also know as superparamagnetic) with anisotropy were carried out with aid of the numerical solution of the Brown kinetic equation. The result was obtained for different sets of parameters that are a frequency of the driving magnetic field the temperature of a sample and the cubic anisotropy direction. The way to calculate the susceptibility of the superparamagnetic material without significant computational cost for low amplitudes of driving field and a small value of the dissipation coefficient was proposed.
Keywords: superparamagnetic, RKDG.
@article{MM_2015_27_8_a6,
     author = {S. A. Khilkov and A. V. Ivanov},
     title = {Resonant properties of superparamagnetic materials for small amplitudes of the periodic field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {96--110},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a6/}
}
TY  - JOUR
AU  - S. A. Khilkov
AU  - A. V. Ivanov
TI  - Resonant properties of superparamagnetic materials for small amplitudes of the periodic field
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 96
EP  - 110
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_8_a6/
LA  - ru
ID  - MM_2015_27_8_a6
ER  - 
%0 Journal Article
%A S. A. Khilkov
%A A. V. Ivanov
%T Resonant properties of superparamagnetic materials for small amplitudes of the periodic field
%J Matematičeskoe modelirovanie
%D 2015
%P 96-110
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_8_a6/
%G ru
%F MM_2015_27_8_a6
S. A. Khilkov; A. V. Ivanov. Resonant properties of superparamagnetic materials for small amplitudes of the periodic field. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 96-110. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a6/

[1] Yu. L. Klimontovich, What are stochastic filtering and stochastic resonance?, Phys. Usp., 42:1 (1999), 37–44

[2] P. S. Landa, D. I. Trubetskov, V. A. Gusev, “Delusions versus reality in some physics problems: theory and experiment”, Phys. Usp., 52:3 (2009), 235–255

[3] Yu. P. Kalmykov, Yu. L. Raikher, W. T. Coffey, S. V. Titov, “Stochastic resonance in single-domain ferromagnetic with cubic anisotropy”, Phys. Solid State, 47:12 (2005), 2325–2332

[4] N. G. Stocks, N. D. Stein, P. V. E. McClintock, “Stochastic resonance in monostable systems”, Journal of Physics A: Mathematical and General, 26:7 (1993), L385

[5] P. S. Landa, Yu. I. Neimark, P. V. E. McClintock, “Changes in the Effective Parameters of Averaged Motion in Nonlinear Systems Subject to Noise”, Journal of Statistical Physics, 125:3 (2006), 593–620

[6] A. V. Ivanov, “Kinetic modeling of magnetic's dynamic”, Matem. mod., 19:10 (2007), 89–104 | Zbl

[7] A. K. Zvezdin, K. A. Zvezdin, A. V. Khval'kovskii, “The generalized Landau-Lifshitz equation and spin transfer processes in magnetic nanostructures”, Phys. Usp., 51:4 (2008), 412–417

[8] W. F. Brown, “Thermal Fluctuations of a Single-Domain Particle”, Phys. Rev., 130, Jun. (1963), 1677–1686

[9] B. Cockburn, C.-W. Shu, “Runge–Kutta Discontinuous Galerkin methods for convection dominated problems”, Journal of Scientific Computing, 16 (2001), 173–261 | Zbl

[10] C.-W. Shu, S. Osher, “Efficient implementation of essentially non-oscillatory shock-capturing schemes”, Journal of Computational Physics, 77:2 (1988), 439–471 | Zbl

[11] M. I. Dykman, D. G. Luchinsky, R. Mannella et al., “Stochastic resonance in perspective”, Il Nuovo Cimento D, 17:7–8 (1995), 661–683

[12] S. A. Khilkov, A. V. Ivanov, “Chislennoe modelirovanie evoliutsii funktsii raspredeleniia magnitnogo momenta dlia superparamagnitnykh materialov”, Keldysh Institute preprints, 2014, 029, 16 pp.