Modeling of the energy balance in deformation and failure processes of AISI~304 steel under quasistatic loading
Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 85-95.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the development of fracture criterion taking into account the stored energy value. The capabilities of this criterion were illustrated by the numerical simulation of AISI 304 steel specimen fracture. The original statistical-thermodynamic model of mesodefect ensembles was used for the deformation behavior description. The use of such criterion let us to simulate a crack initiation and propagation in the sample, multiple cracks initiation and a crack deviation from the straight path.
Keywords: plastic deformation, dissipated and stored energies.
Mots-clés : fracture
@article{MM_2015_27_8_a5,
     author = {A. A. Kostina and O. A. Plekhov},
     title = {Modeling of the energy balance in deformation and failure processes of {AISI~304} steel under quasistatic loading},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {85--95},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a5/}
}
TY  - JOUR
AU  - A. A. Kostina
AU  - O. A. Plekhov
TI  - Modeling of the energy balance in deformation and failure processes of AISI~304 steel under quasistatic loading
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 85
EP  - 95
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_8_a5/
LA  - ru
ID  - MM_2015_27_8_a5
ER  - 
%0 Journal Article
%A A. A. Kostina
%A O. A. Plekhov
%T Modeling of the energy balance in deformation and failure processes of AISI~304 steel under quasistatic loading
%J Matematičeskoe modelirovanie
%D 2015
%P 85-95
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_8_a5/
%G ru
%F MM_2015_27_8_a5
A. A. Kostina; O. A. Plekhov. Modeling of the energy balance in deformation and failure processes of AISI~304 steel under quasistatic loading. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 85-95. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a5/

[1] V. V. Fedorov, Termodinamicheskie aspekty prochnosti i razrusheniia tverdykh tel, FAN UzSSR, Tashkent, 1979, 168 pp.

[2] J. F. Delorme, G. Sinicki, P. Gobin, “Calorimetric study of the energy dissipated from a solid subjected to fatigue cycles”, J. Phys. D: Appl. Phys., 1968, no. 1, 1737–1742

[3] J. Kaleta, R. Blotny, H. Harig, “Energy stored in a specimen under fatigue limit loading conditions”, J. Test Eval., 19 (1990), 326–333

[4] G. Fargione, A. Geraci, G. La Rosa, A. Risitano, “Rapid determination of the fatigue curve by the thermographic method”, Int. J. Fatigue, 24 (2002), 11–19

[5] G. I. Taylor, H. Quinney, “The latent heat remaining in a metal after cold working”, Proc. Roy. Soc. A, 143:849 (1934), 307–326

[6] D. Rittel, “The conversion of plastic work to heat during high strain rate deformation of glassy polymers”, Mech. Mater., 31 (1999), 131–139

[7] J. J. Mason, A. J. Rosakis, G. Ravichandran, “On the strain and strain-rate dependence of fraction of plastic work converted into heat: an experimental study using high-speed infrared detectors and the Kolsky bar”, Mech. Mater., 17:2–3 (1994), 135–145

[8] W. Oliferuk, A. Korbel, W. Bochniak, “Energy balance and macroscopic strain localization during plastic deformation of polycrystalline metals”, Mater. Sci. Eng. A, 319–321 (2001), 250–253

[9] O. A. Plekhov, Strukturno-kineticheskie mechanizmy deformirovaniia i razrusheniia materialov v krupnozernistom i submikrokristallicheskom sostoianiiakh, Avtoreferat dissertatsii d-r fiz.-mat. nauk, Inst. mech. sploshnykh sred, Perm, 2009

[10] O. Plekhov, N. Saintier, T. Palin-Luc, S. Uvarov, O. Naimark, “Theoretical analysis, infrared and structural investigation of energy dissipation in metals under quasi-static and cyclic loading”, Mater. Sci. Eng. A, 462:1 (2007), 367–370

[11] M. B. Bever, D. L. Holt, A. L. Titchener, The stored energy of cold work, Pergamon, New York, 1973, 192 pp.

[12] O. B. Naimark, “Kollektivnye svoistva ansamblei defektov i nekotorye nelineinye problemy plastichnosti i razrysheniia”, Fiz. mezomekh., 6:4 (2003), 45–72

[13] J. Lemaitre, J. Chaboche, Mechanics of Solid Materials, Cambridge University Press, Cambridge, 1994, 584 pp.

[14] L. M. Kachanov, “O vremeni razrusheniia v usloviiakh polzuchesti”, Izv. An. SSSR. Otn., 1958, no. 8, 26–31 | Zbl

[15] P. Glansdorff, I. Prigogine, Thermodynamic theory of structure, stability and fluctuations, Wiley, 1971, 306 pp. | Zbl

[16] A. A. Kostina, Iu. V. Baiandin, O. A. Plekhov, “Modelirovanie protsessa nakopleniia i dissipatsii energii pri plasticheskom deformirovanii metallov”, Fiz. mezomech., 17:1 (2014), 43–49

[17] P. Rosakis et al., “A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals”, J. Mech. Phys. Solids, 48 (2000), 581–607 | Zbl

[18] W. Oliferuk, M. Maj, “Stress-strain curve and stored energy during uniaxial deformation of polycrystals”, Europ. J. Mech. A. Solids, 28 (2009), 266–272 | Zbl

[19] T. Belytschko, T. Black, “Elastic crack growth in finite elements with minimal remeshing”, Int. J. Numer. Meth. Eng., 45:5 (1999), 601–620 | Zbl

[20] W. Oliferuk, M. Maj, “Energy storage rate in non-homogeneous deformation”, Proc. 21$^\mathrm{st}$ Int. Cong. Theor. Appl. Mech., ICTAM04, 2005, 11185, 2 pp. (E-book)