Coherent hydrodynamic structures and vortex dynamics
Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 63-84.

Voir la notice de l'article provenant de la source Math-Net.Ru

Possible approaches to modeling of 2-dimensional coherent hydrodynamic structures on the basis of statistical mechanics of local vortices are considered. Exact definitions of coherent structures are given and mechanisms of their formation are shown. The bases of the kinetic theory of Onsager vortices are given and possibility of application of the classical molecular-kinetic theory for an explanation of origin of vortex mesostructures in the shear flows is considered.
Keywords: coherent hydrodynamic structures, Poisson systems, Joyce–Montgomery equation, solution branching.
Mots-clés : Onsager vortices, Vlasov equation, variation problem
@article{MM_2015_27_8_a4,
     author = {O. M. Belotserkovskii and N. N. Fimin and V. M. Chechetkin},
     title = {Coherent hydrodynamic structures and vortex dynamics},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {63--84},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a4/}
}
TY  - JOUR
AU  - O. M. Belotserkovskii
AU  - N. N. Fimin
AU  - V. M. Chechetkin
TI  - Coherent hydrodynamic structures and vortex dynamics
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 63
EP  - 84
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_8_a4/
LA  - ru
ID  - MM_2015_27_8_a4
ER  - 
%0 Journal Article
%A O. M. Belotserkovskii
%A N. N. Fimin
%A V. M. Chechetkin
%T Coherent hydrodynamic structures and vortex dynamics
%J Matematičeskoe modelirovanie
%D 2015
%P 63-84
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_8_a4/
%G ru
%F MM_2015_27_8_a4
O. M. Belotserkovskii; N. N. Fimin; V. M. Chechetkin. Coherent hydrodynamic structures and vortex dynamics. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 63-84. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a4/

[1] A. K. M. F. Hussain, W. C. Reynolds, “The mechanics of an organized wave in turbulent shear flow”, J. Fluid Mech., 41 (1970), 241–258

[2] A. K. M. F. Hussain, Cardiovascular flow dynamics and measurements, eds. N. H. C. Hwang, N. Norman, U. Park Pr. Baltimore, 1977, 541 pp.

[3] A. K. M. F. Hussain, “Investigation of coherent structures in free turbulent shear flow”, Proc. Sixth Biennal Symposiom on Turbulence (Dept. of Chemical Engineering, Univ. of Missouri-Rolla, 1979)

[4] I. Wygnanski, D. Oster, H. Fiedler, “The forced plane turbulent mixing layer: a challenge for the predictor”, Proc. Second Symposium on Turbulent Shear Flows (London, 1979)

[5] D. D. Knight, B. T. Murray, “Theoretical investigation of interaction and coalescence of large scale structures in the turbulent mixing layer”, Proc. of the International Conf. “The role of coherent structures in modelling turbulence and mixing” (Madrid, June 25–27, 1980), ed. Jimenez J., Springer-Verlag, Berlin–Heidelberg–New York, 1981, 62–92

[6] M. Kirby, D. Armbruster, “Reconstructing phase space from PDE simulations”, Z. Angew. Math. Phys., 43 (1992), 999–1022 | Zbl

[7] J. T. C. Liu, “Contributions to the understanding of large-scale coherent strucrures in developing free turbulent shear flows”, Advances in Appl. Mech., 26 (1988), 45–62

[8] P. Moin, R. D. Moser, “Characteristic-eddy decomposition of turbulence in a tunnel”, J. Fluid Mech., 200 (1989), 471–509 | Zbl

[9] P. Holmes, J. L. Lumley, G. Berkooz, Turbulence, coherent structures, dynamical systems and symmetry, Cambridge University Press, Cambridge, 1996 | Zbl

[10] W. van Saarloos, D. Bedeaux, P. Mazur, “Non-linear hydrodynamic fluctuations around equilibrium”, Physica A, 110 (1982), 147–170

[11] A. Pumir, “A numerical study of pressure fluctuations in three-dimensional, incompressible, homogeneous, isotropic turbulence”, Phys. Fluids, 6 (1994), 2071–2083 | Zbl

[12] P. Santangelo, R. Benzi, B. Legras, “The generation of vortices in high-resolution, two-dimensional, decaying turbulence and the influence of initial conditions on the breaking of self-similarity”, Phys. Fluids A, 1 (1989), 1027–1034

[13] M. F. Shlesinger, B. J. West, J. Klafter, “Levy dynamics of enhanced diffusion: application to turbulence”, Phys. Rev. Lett., 58 (1987), 1100–1103

[14] A. V. Kolesnichenko, “K termodinamicheskomu modelirovaniiu razvitoi turbulentnosti pri uchete kogerentnykh vikhrevykh struktur”, Mat. modelirovanie, 16:9 (2004), 92–126 | Zbl

[15] A. V. Kolesnichenko, “Sinergeticheskii podkhod k opisaniiu statsionarno-neravnovesnoi turbulentnosti”, Mat. modelirovanie, 16:1 (2004), 37–66 | Zbl

[16] A. V. Kolesnichenko, “A synergetic approach to the description of advanced turbulence”, Sol. Syst. Res., 36:2 (2002), 107

[17] A. V. Kolesnichenko, “O vozmozhnosti sinergeticheskogo rozhdeniia mezomasshtabnykh kogerentnykh struktur v makroskopicheskoi teorii razvitoi turbulentnosti”, Mat. modelirovanie, 17:10 (2005), 47–78 | Zbl

[18] L. I. Sedov, A course in continuum mechanics, v. I, Wolters-Noordhoff Publishing, Groningen, 1971 | Zbl

[19] U. Rist, H. Fasel, “Direct numerical simulation of controlled transition in a flat-plate boundary layer”, J. Fluid Mech., 298 (1995), 211–248 | Zbl

[20] H. Le, P. Moin, J. Kim, “Direct numerical simulation of turbulent flow over a backward-facing step”, J. Fluid Mech., 330 (1997), 349–374 | Zbl

[21] B. E. Launder, D. B. Spalding, Mathematical models of turbulence, Academic Press, 1972 | Zbl

[22] G. Erlebacher, M. Y. Hussaini, C. G. Speziale, T. A. Zang, “Towards a large-eddy simulation of compressible turbulent flows”, J. Fluid Mech., 238 (1992), 155–185 | Zbl

[23] N. M. El Hady, T. A. Zang, “Large-eddy simulation of nonlinear evolution and breakdown to turbulence in high-speed boundary layers”, Theor. Comput. Fluid Dyn., 7 (1995), 217–240 | Zbl

[24] F. Ducros, P. Comte, M. Lesieur, “Large-eddy simulation of transition to turbulence in a boundary layer developing spatially over a flat plate”, J. Fluid Mech., 326 (1996), 1–36 | Zbl

[25] M. J. Aksman, E. A. Novikov, S. A. Orszag, “Vorton method in three-dimensional hydrodynamics”, Phys. Rev. Lett., 54 (1985), 2410–2413

[26] E. Meiburg, “Three dimensional vortex dynamics simulations”, Fluid vortices, ed. Green S. I., Kluwer Academic Publishers, 1995, 651–685

[27] O. M. Belotserkovskii, Chislennoe modelirovanie v mekhanike sploshnye sred, Fizmatlit, M., 1994, 443 pp.

[28] O. M. Belotserkovskii, V. A. Gushchin, “Novye chislennye modeli v mekhanike sploshnykh sred”, Uspekhi mekhaniki, 8:1 (1985), 97–150

[29] O. M. Belotserkovskii, A. M. Oparin, V. M. Chechetkin, Turbulence: new approaches, Cambridge International Science Publishi, Cambridge, 2005

[30] D. Montgomery, G. Joyce, “Statistical mechanics of “negative temperature” states”, Phys. Fluids, 17 (1974), 1139–1145

[31] P. Chen, M. C. Cross, “Mean field equilibria of single coherent vortices”, Phys. Rev. E, 54 (1996), 6356–6363

[32] J. Miller, P. B. Weichman, M. C. Cross, “Statistical mechanics, Euler's equation, and Jupiter's Red Spot”, Phys. Rev. A, 45:4 (1992), 2328–2359

[33] B. Turkington, “Statistical equilibrium measures and coherent states in two-dimensional turbulence”, Comm. Pure Appl. Math., 52:7 (1999), 781–809

[34] J. Sommeria, C. Nore, T. Dumont, R. Robert, “Theorie statistique de la tache rouge de Jupiter”, C. R. Acad. Sci. Paris (ser. II), 312 (1991), 999–1005

[35] J. Michel, R. Robert, “Statistical mechanical theory of the Great Red Spot of Jupiter”, J. Stat. Phys., 77:3–4 (1994), 645–666 | Zbl

[36] L. Onsager, “Statistical hydrodynamics”, Nuovo Cimento Suppl., 6 (1949), 279–289

[37] R. Robert, “A maximum-entropy principle for two-dimensional perfect fluid dynamics”, J. Stat. Phys., 65 (1991), 531–533

[38] J. Miller, “Statistical mechanics of Euler equation in two dimensions”, Phys. Rev. Lett., 65:17 (1990), 2137–2140 | Zbl

[39] R. S. Ellis, K. Haven, B. Turkington, “Nonequivalent statistical equilibrium ensembles and refined stability theorems for most probable flows”, Nonlinearity, 15 (2002), 239–255 | Zbl

[40] P.-H. Chavanis, “Statistical mechanics of geophysical turbulence: application to Jovian flows and Jupiter's great Red Spot”, Physica D, 200 (2005), 257–272 | Zbl

[41] F. Bouchet, J. Sommeria, “Emergence of intense jets and Jupiter's Great Red Spot as maximum entropy structures”, J. Fluid Mech., 464 (2002), 165–207 | Zbl

[42] J. Modica, “The gradient theory of phase transitions and the minimal interface criterion”, Arch. Rat. Mech. Anal., 98 (1987), 123–142 | Zbl

[43] A. Leonard, “Vortex methods for flow simulation”, J. Comput. Phys., 37:3 (1980), 289–335 | Zbl

[44] A. J. Chorin, “Numerical study of slightly viscous flow”, J. Fluid Mech., 57 (1973), 785–798

[45] K. Kuwahara, H. Takami, “Numerical studies of two dimensional vortex motion by a system of point vortices”, J. Phys. Soc. Japan, 34:1 (1973), 247–253

[46] D. Lynden-Bell, “Statistical mechanics of violent relaxation in stellar systems”, Mon. Not. Roy. Astron. Soc., 136 (1967), 101

[47] D. Chavanis, Contribution à la mè canique statistique des tourbillons bidimensionnels. Analogie avec la relaxation violente des systèmes stellaires, Ph. D. Thesis, Ecole Normale Suprerieure de Lyon, 1996

[48] K. V. Chukbar, “Statistics of two-dimensional vortices and the Holtsmark distribution”, Plasma Phys. Rep., 25 (1999), 77

[49] M. Bixon, R. Zwanzig, “Boltzmann–Langevin equation and hydrodynamic fluctuations”, Phys. Rev., 187 (1969), 267

[50] H. Ueyama, “The stochastic Boltzmann equation and hydrodynamic fluctuations”, J. Stat. Phys., 22:1 (1980), 1–26 | Zbl

[51] S. J. Kline, W. D. Reynolds, F. A. Schraub, P. W. Runstadler, “The structure of turbulent boundary layers”, J. Fluid Mech., 30 (1967), 741–773

[52] S. C. Crow, F. H. Champagne, “Orderly structure in jet turbulence”, J. Fluid Mech., 48 (1971), 547–591

[53] G. L. Brown, A. Roshko, “On density effects and large structure in turbulent mixing layers”, J. Fluid Mech., 64 (1974), 775–816

[54] A. E. Perry, T. T. Lim, M. S. Chong, E. W. Tex, The fabric of turbulence, AIAA Paper 80-1358, 1980

[55] M. Lesieur, Turbulence in fluids, Kluwer Academic Publishers, Dordrecht–Boston–London, 1997 | Zbl

[56] A. K. M. Hussain, “Role of coherent structures in turbulent shear flows”, Proc. Indian Acad. Sci. (Engg. Sci.), 4:2 (1981), 129–175

[57] B. W. van de Fliert, E. van Groesen, “On variational principles for coherent vortex structures”, Appl. Scient. Research, 51 (1993), 399–403 | Zbl

[58] E. R. Fledderus, E. van Groesen, “Deformation of coherent structures”, Rep. Prog. Phys., 59 (1996), 511–600

[59] K. A. O'Neil, “Stationary configurations of point vortices”, Trans. Am. Math. Soc., 302 (1987), 383–425 | Zbl

[60] C. Beck, E. G. D. Cohen, “Superstatistics”, Physica A, 322 (2003), 267–275 | Zbl