Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation
Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 32-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

A variant of hybrid scheme for solving non-homogeneous stationary transport equation is constructed. A bicompact scheme of the fourth order approximation over all space variables and the first order approximation scheme from a set of short characteristic methods with interpolation over illuminated faces are chosen as a base. It is shown that the chosen first order approximation scheme is a scheme with minimal dissipation. Monotone scheme is constructed by continuous and homogeneous procedure in all mesh cells by keeping the fourth approximation order in domains where solution is smooth and maintaining high practical accuracy in a domain of discontinuity. Logical simplicity and homogeneity of suggested algorithm make this method well fitted for supercomputer calculations.
Mots-clés : transport equation
Keywords: bicompact schemes, short characteristic method, monotonic schemes, minimal dissipation, hybrid schemes.
@article{MM_2015_27_8_a2,
     author = {E. N. Aristova and B. V. Rogov and A. V. Chikitkin},
     title = {Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {32--46},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a2/}
}
TY  - JOUR
AU  - E. N. Aristova
AU  - B. V. Rogov
AU  - A. V. Chikitkin
TI  - Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 32
EP  - 46
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_8_a2/
LA  - ru
ID  - MM_2015_27_8_a2
ER  - 
%0 Journal Article
%A E. N. Aristova
%A B. V. Rogov
%A A. V. Chikitkin
%T Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation
%J Matematičeskoe modelirovanie
%D 2015
%P 32-46
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_8_a2/
%G ru
%F MM_2015_27_8_a2
E. N. Aristova; B. V. Rogov; A. V. Chikitkin. Monotonization of high accuracy bicompact scheme for stationary multidimensional transport equation. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 32-46. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a2/

[1] E. N. Aristova, B. V. Rogov, “Boundary conditions implementation in bicompact schemes for the linear transport equation”, Mathematical Models and Computer Simulations, 5:3 (2013), 199–208

[2] B. V. Rogov, M. N. Mikhailovskaya, “Fourth-Order Accurate Bicompact Schemes for Hyperbolic Equations”, Doklady Mathematics, 81:1 (2010), 146–150 | Zbl

[3] B. V. Rogov, M. N. Mikhailovskaya, “Monotonic Bicompact Schemes for Linear Transport Equations”, Mathematical Models and Computer Simulations, 4:1 (2012), 92–100 | Zbl

[4] M. N. Mikhailovskaya, B. V. Rogov, “Monotone Compact Running Schemes for Systems of Hyperbolic Equations”, Computational Mathematics and Mathematical Physics, 52:4 (2012), 578–600 | Zbl

[5] E. N. Aristova, B. V. Rogov, “Bicompact scheme for the multidimensional stationary linear transport equation”, Applied Numerical Mathematics, 93 (2015), 3–14 | DOI | Zbl

[6] S. K. Godunov, “Raznostnyi metod chislennogo rascheta razryvnykh reshenii uravnenii gidrodinamiki”, Matem. sb., 47(89):3 (1959), 271–306 | Zbl

[7] V. Ya. Gol'din, “A quasi-diffusion method of solving the kinetic equation”, USSR Computational Mathematics and Mathematical Physics, 4:6 (1964), 136–149

[8] V. Ia. Goldin, “O matematicheskom modelirovanii zadach sploshnoi sredy s neravnovesnym perenosom”, Sovremennye problemy matematicheskoy fiziki i vychislitelnoi matematiki, Nauka, M., 1982, 113–127

[9] A. G. Kulikovskii, N. V. Pogorelov, A. Iu. Semenov, Matematicheskie voprosy chislennogo resheniia giperbolicheskikh sistem uravnenii, 2-e izd., ispr. i dop., Fizmatlit, M., 2012, 656 pp.

[10] R. P. Fedorenko, “The application of difference schemes of high accuracy to the numerical solution of hyperbolic equations”, USSR Computational Mathematics and Mathematical Physics, 2:6 (1963), 1355–1365 | Zbl

[11] V. Ya. Gol'din, N. N. Kalitkin, T. V. Shishova, “Non-linear difference schemes for hyperbolic equations”, USSR Computational Mathematics and Mathematical Physics, 5:5 (1965), 229–239

[12] B. V. Rogov, “High-Order Accurate Monotone Compact Running Scheme for Multidimensional Hyperbolic Equations”, Computational Mathematics and Mathematical Physics, 53:2 (2013), 205–214 | Zbl

[13] A. V. Chikitkin, B. V. Rogov, S. V. Utyuzhnikov, “High-order accurate monotone compact running scheme for multidimensional hyperbolic equations”, Applied Numerical Mathematics, 2014 (to appear) | DOI

[14] A. S. Kholodov, Ya. A. Kholodov, “Monotonicity criteria for difference schemes designed for hyperbolic equations”, Computational Mathematics and Mathematical Physics, 46:9 (2006), 1560–1588

[15] B. N. Chetverushkin, “Resolution limits of continuous media mode and their mathematical formulations”, Mathematical Models and Computer simulations, 5:3 (2013), 266–279 | Zbl

[16] B. N. Chetverushkin, V. A. Gasilov, V. G. Novikov, O. G. Olkhovskaya, E. Yu. Dorofeeva, I. M. Boyko, “Proekt NuFuSE i razrabotka RMGD-metodik dlia predskazatelnogo modelirovaniia protsessov v energeticheskikh termoiadernykh ustroistvakh”, Keldysh Institute preprints, 2014, 005, 24 pp. | Zbl