Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_8_a1, author = {A. V. Shilkov and M. N. Gerthev}, title = {The {Lebesgue{\textquoteright}s} averaging method veryfication}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {13--31}, publisher = {mathdoc}, volume = {27}, number = {8}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a1/} }
A. V. Shilkov; M. N. Gerthev. The Lebesgue’s averaging method veryfication. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 13-31. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a1/
[1] Uchenye zapiski Leningradskogo universiteta. Seria Matem. Nauk (Astronomia), 6:1 (1936), 7–18
[2] A. I. Lebedinskii, “Luchevoe ravnovesie zemnoi atmosfery”, Uchenye zapiski Leningradskogo universiteta. Seria Matem. Nauk (Astronomia), 31:3 (1939)
[3] K. Ia. Kondratyev, Perenos dlinnovolnovogo izluchenia v atmosphere, Gostekhizdat, M., 1950, 288 pp.
[4] V. Ia. Goldin, B. N. Chetverushkin, “Effektivnyi metod resheniia uravneniia perenosa izlucheniia v nizkotemperaturnoi plazme”, Dokl. AN SSSR, 195:2 (1970), 315–317
[5] V. Ya. Gol'din, B. N. Chetverushkin, “Methods of solving one-dimentional problems of radiation gas dynamics”, USSR Computational Math. and Mathem. Physics, 12:4 (1972), 177–189
[6] J. C. Stewart, “Non-grey radiative transfer”, J. Quant. Spectrosc. Radiat. Transfer, 4 (1964), 723–729
[7] R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, AFCRL atmospheric absorption line parameters compilation, Techn. Rep. AFCRLTR-0096, Air Force Cambridge Research Lab., 1973, 87 pp.
[8] L. S. Rothman et al., “The HITRAN2012 molecular spectroscopic database”, J. Quant. Spectrosc. and Radiat. Transfer, 130 (2013), 4–50
[9] A. A. Arking, K. Grossman, “The Influence of Line Shape and Band Structure on Temperatures in Planetary Atmospheres”, J. Atmos. Sci., 29 (1972), 937–949
[10] D. A. Domoto, “Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function”, J. Quant. Spectrosc. and Radiat. Transfer, 14 (1974), 935–942
[11] M. D. Chou, A. A. Arking, “Computation of Infrared Cooling Rates in the H2O Bands”, J. Atmos. Sci., 37 (1980), 855–867
[12] G. L. Stephens, “The parameterization of radiation for numerical weather prediction and climate models”, Monthly Weather Review, 112 (1984), 826–867
[13] W. C. Wang, G. Y. Shi, “Total band absorptance and k-distribution function for atmospheric gases”, J. Quant. Spectrosc. and Radiat. Transfer, 39:5 (1988), 387–397
[14] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Khokhlov, “Metod podgrupp dlia ucheta rezonansnoi struktury sechenii v neitronnykh raschetakh, 1”, Atomnaia energiia, 29:1 (1970), 11–16
[15] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Khokhlov, “Metod podgrupp dlia ucheta rezonansnoi struktury sechenii v neitronnykh raschetakh, 2”, Atomnaia energiia, 30:5 (1971), 426–430 | Zbl
[16] M. N. Nikolaev, D. A. Usikov, “Formulirovka granichnykh uslovii v metode podgrupp”, Atomnaia energiia, 34:2 (1973), 112
[17] V. V. Sinitsa, M. N. Nikolaev, “Analiticheskii metod polucheniia podgruppovykh parametrov”, Atomnaia energiia, 35:6 (1973), 429–430
[18] M. N. Nikolaev, B. G. Riazanov, M. M. Savoskin, A. M. Tsibulia, Mnogogruppovoe priblizhenie v teorii perenosa neitronov, Energoatomizdat, M., 1984, 256 pp.
[19] D. E. Cullen, “Application of the probability tabel method to multigroup calculations of neutron transport”, J. Nuclear Science and Engineering, 55 (1974), 387–400
[20] D. E. Cullen, “Nuclear cross section preparation”, The CRC handbook of nuclear reactor calculations, v. 1, ed. Y. Ronen, CRC Press, Boca Raton, 1986, 15–131
[21] D. E. Cullen, “Nuclear data preparation”, Handbook of nuclear engineering, v. 1, ed. D. G. Cacuci, Springer Science, NY, 2010, 279–425
[22] V. F. Khokhlov, V. D. Tkachev, V. L. Reitblat, I. H. Sheino, “Podgruppovoi metod ucheta prostranstvennogo raspredeleniia nerasseiannykh i odnokratno rasseiannykh neitronov v mnogogruppovykh raschetakh zashchity”, Atomnaia energiia, 44:4 (1978), 324–327
[23] V. B. Tebin, M. S. Iudkevich, “Obobshchennyi podgruppovoi podkhod k raschetu rezonansnogo pogloshcheniia neitronov”, Atomnaia energiia, 59:2 (1985), 96–101
[24] L. V. Maiorov, M. S. Iudkevich, Neitronno-fizicheskie konstanty v raschetakh reaktorov na teplovykh neitronakh, Seriia Fizika i tekhnika iadernykh reaktorov, 34, Energoatomizdat, M., 1988, 136 pp.
[25] V. M. Krivtsov, “Ob odnom podhode k raschetu selektivnogo izluchenia”, Zh. Vychisl. Mat. Mat. Fiz., 14:6 (1974), 1595–1599
[26] V. M. Ovsiannikov, Uchet selektivnosti pogloshcheniia izlucheniia v giperzvukovom potoke gaza, Nauka, M., 1983, 152 pp.
[27] M. F. Modest, “The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer”, ASME Journal of Heat Transfer, 113:3 (1991), 650–656
[28] M. K. Denison, B. W. Webb, “A spectral line based weighted-sum-of-gray-gases model for arbitrary RTE solvers”, ASME Journal of Heat Transfer, 115 (1993), 1004–1012
[29] V. M. Krivtsov, “O raschete selektivnogo izluchenia”, Dinamika izluchaiushego gaza, 2, ed. Iu. D. Shmyglevckii, Izd. Vychisl. Tsentra AN SSSR, M., 1976, 36–41 | Zbl
[30] D. E. Cullen, G. C. Pomraning, “The Multiband Method in Radiative Transfer Calculations”, J. Quant. Spectrosc. and Radiat. Transfer, 24 (1980), 97–117
[31] Math. modeling (Soviet), 3:1 (1991), 12–20
[32] A. V. Shilkov, “Metody osredneniia sechenii i energeticheskogo spektra v zadachakh perenosa neitronov”, Matemat. modelirovanie, 3:2 (1991), 63–81
[33] A. V. Shilkov, “Generalized Multigroup Approximation and Lebesgue Averaging Method in Particle Transport Problems”, Transp. Theory and Stat. Physics, 23:6 (1994), 781–814 | Zbl
[34] A. V. Shilkov, I. L. Tsvetkova, S. V. Shilkova, “Sistema ATRAD dlia raschetov atmosfernoi radiatsii: lebegovskoe osrednenie spektrov i sechenii pogloshcheniia”, Matem. model., 9:6 (1997), 3–24
[35] A. A. Lacis, V. Oinas, “A Description of the Correlated K-distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres”, J. Geophysical Research, 96:D5 (1991), 9027–9063
[36] R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, 2-nd edition, Oxford Univ. Press, NY, 1989, 535 pp.
[37] R. Goody, R. West, L. Chen, D. Crisp, “The correlated-k method for radiation calculations in nonhomogeneous atmospheres”, J. Quant. Spectrosc. and Radiat. Transfer., 42:6 (1989), 539–550
[38] Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres”, J. Atmos. Sci., 49 (1992), 2139–2156
[39] P. Riviere, A. Soufiani, J. Taine, “Correlated-k and Fictitious Gas Methods for H2O near 2.7 $\mu$m”, J. Quant. Spectrosc. Radiative Transfer, 48 (1992), 187–203
[40] P. Riviere, A. Soufiani, J. Taine, “Correlated-k and Fictitious Gas Model for H2O Infrared Radiation in the Voigt Regime”, J. Quant. Spectrosc. Radiative Transfer, 53 (1995), 335–346
[41] P. G. J. Irwin, S. B. Calcutt, F. W. Taylor, A. L. Weir, “Calculated k distribution coefficients for hydrogen- and self-broadened methane in the range 2000–9500 cm(-1) from exponential sum fitting to band-modelled spectra”, J. Geophysical Research, 101:E11 (1996), 137–154
[42] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”, J. of Geophysical Research, 102:D14 (1997), 16,663–16,682
[43] K. M. Firsov, A. A. Mitsel, Yu. N. Ponomarev, I. V. Ptashnik, “Parametrization of transmittance for application in atmospheric optics”, J. Quant. Spectrosc. and Radiat. Transfer, 59:3–5 (1998), 203–213
[44] S. D. Tvorogov, “Primenenie riadov eksponent dlia integrirovaniia uravneniia perenosa po chastote”, Optika atmosfery i okeana, 12:9 (1999), 763–766
[45] A. A. Mitsel, K. M. Firsov, B. A. Fomin, Perenos opticheskogo izlucheniia v molekuliarnoi atmosfere, STT, Tomsk, 2001, 444 pp.
[46] M. Z. Jacobson, “A Refined Method of Parameterizing Absorption Coefficients among Multiple Gases Simultaneously from Line-by-Line Data”, J. of the Atmospheric Sciences, 62 (2005), 506–517
[47] B. Fomin, M. P. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere. 2: FKDM, fast k-distribution model for the shortwave”, J. Geophysical Research, 110 (2005), D02106, 10 pp.
[48] W. Zdunkowski, T. Trautmann, A. Bott, Radiation in the atmosphere. A course in theoretical meteorology, Cambridge University Press, NY, 2007, 497 pp.
[49] S. D. Tvorogov, T. B. Zhuravleva, O. B. Rodimova, K. M. Firsov, “Theory of series of exponents and their application for analysis of radiation processes”, Global Climatology and Ecodynamics: Anthropogenic Changes to Planet Earth, ed. P. Cracknell, V. F. Krapivin, C. A. Vaotsos, Springer, Berlin, 2008, 211–240
[50] M. K. Denison, B. W. Webb, “An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer”, J. Quant. Spectrosc. and Radiat. Transfer, 50 (1993), 499–510
[51] M. K. Denison, B. W. Webb, “The spectral-line-based weighted-sum-of-gray-gases model in nonisothermal nonhomogeneous media”, ASME Journal of Heat Transfer, 117 (1995), 359–365
[52] M. K. Denison, B. W. Webb, “Development and application of an absorption line blackbody distribution function for CO2”, Int. J. of Heat and Mass Transfer, 38 (1995), 1813–1821
[53] M. K. Denison, B. W. Webb, “The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures”, ASME Journal of Heat Transfer, 117 (1995), 788–792
[54] P. Riviere, A. Soufiani, M. Y. Perrin, H. Riad, A. Gleizes, “Air mixture radiative property modelling in the temperature range 10,000–40,000 K”, J. Quant. Spectrosc. and Radiat. Transfer, 56:1 (1996), 29–45
[55] M. F. Modest, H. Zhang, “The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures”, ASME J. Heat Transfer, 124:1 (2002), 30–38
[56] M. F. Modest, “Narrow-band and full-spectrum k-distributions for radiative heat transfer?correlated-k vs. scaling approximation”, J. Quant. Spectrosc. and Radiat. Transfer, 76:1 (2003), 69–83
[57] M. F. Modest, Radiative heat transfer, Third Edition, Elsevier, NY, 2013, 897 pp.
[58] G. P. Anderson, S. A. Clough et al., AFGL Atmospheric Constituent Profiles (0–120 km), AFGL-TR-860110, Environmental Research Papers, No 954, US Air Force Geophysics Laboratory, Hanscom, Massachusetts, 1986, 46 pp.
[59] S. V. Mozheyko, I. L. Tsvetkova, A. V. Shilkov, “The calculation of radiative transfer in a hot air”, Matem. model., 4:1 (1992), 65–82
[60] A. V. Shilkov, S. V. Shilkova, “Sistema ATRAD dlia raschetov atmosfernoi radiatsii: raschety perenosa teplovogo izlucheniia dlia bezoblachnoi letnei atmosfery srednikh shirot”, Matem. model., 11:1 (1999), 18–24
[61] E. N. Aristova, V. Ia. Goldin, A. V. Shilkov, S. V. Shilkova, “Sistema ATRAD dlia raschetov atmosfernoi radiatsii: raschety perenosa solnechnogo izlucheniia dlia letnei atmosfery srednikh shirot”, Matem. model., 11:5 (1999), 117–125
[62] A. V. Shilkov, “Chetno-nechetnye kineticheskie uravneniia perenosa chastits. 2: Konechno-analiticheskaia kharakteristicheskaia skhema dlia odnomernykh zadach”, Matem. model., 26:7 (2014), 33–53 | Zbl
[63] A. V. Shilkov, M. N. Gertsev, E. N. Aristova, S. V. Shilkova, “Metodika etalonnykh “line-by-line” raschetov atmosfernoi radiatsii”, Kompiuternye issledovaniia i modelirovanie, 4:3 (2012), 553–562 | Zbl