The Lebesgue’s averaging method veryfication
Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 13-31.

Voir la notice de l'article provenant de la source Math-Net.Ru

The work is dedicated to the research of the accuracy of the Lebesgue Averaging Method (LAM) for computing spectra of resonance radiation in solving kinetic radiation transfer equation. The method is verified for the thermal radiation transfer problem in the Earth's atmosphere. The comparison of results obtained in accordance of two variants of the LAM with the results of the precise "line-by-line" calculation has been carried out. At first variant of LAM the “pure” Lebesque integral is implemented at which the value of the absorption coefficient is taken as independent variable. At second variant of LAM the integral of Lebesque–Stieltjes is used with independent variable reduced to measure of Lebesque’s set. In order to assure purity of the experiment all the computations were performed using unique method of space-angle discretization of the kinetic equation. The high accuracy of the second variant of LAM (within 5%) has been shown with a significant cut in number of arithmetic operations in need (approximately $10^3$$10^4$ times).
Keywords: computational physics, kinetic equation of radiative transfer, line-by-line computation, Lebesgue method for averaging radiation spectra.
@article{MM_2015_27_8_a1,
     author = {A. V. Shilkov and M. N. Gerthev},
     title = {The {Lebesgue{\textquoteright}s} averaging method veryfication},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {13--31},
     publisher = {mathdoc},
     volume = {27},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a1/}
}
TY  - JOUR
AU  - A. V. Shilkov
AU  - M. N. Gerthev
TI  - The Lebesgue’s averaging method veryfication
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 13
EP  - 31
VL  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_8_a1/
LA  - ru
ID  - MM_2015_27_8_a1
ER  - 
%0 Journal Article
%A A. V. Shilkov
%A M. N. Gerthev
%T The Lebesgue’s averaging method veryfication
%J Matematičeskoe modelirovanie
%D 2015
%P 13-31
%V 27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_8_a1/
%G ru
%F MM_2015_27_8_a1
A. V. Shilkov; M. N. Gerthev. The Lebesgue’s averaging method veryfication. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 13-31. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a1/

[1] Uchenye zapiski Leningradskogo universiteta. Seria Matem. Nauk (Astronomia), 6:1 (1936), 7–18

[2] A. I. Lebedinskii, “Luchevoe ravnovesie zemnoi atmosfery”, Uchenye zapiski Leningradskogo universiteta. Seria Matem. Nauk (Astronomia), 31:3 (1939)

[3] K. Ia. Kondratyev, Perenos dlinnovolnovogo izluchenia v atmosphere, Gostekhizdat, M., 1950, 288 pp.

[4] V. Ia. Goldin, B. N. Chetverushkin, “Effektivnyi metod resheniia uravneniia perenosa izlucheniia v nizkotemperaturnoi plazme”, Dokl. AN SSSR, 195:2 (1970), 315–317

[5] V. Ya. Gol'din, B. N. Chetverushkin, “Methods of solving one-dimentional problems of radiation gas dynamics”, USSR Computational Math. and Mathem. Physics, 12:4 (1972), 177–189

[6] J. C. Stewart, “Non-grey radiative transfer”, J. Quant. Spectrosc. Radiat. Transfer, 4 (1964), 723–729

[7] R. A. McClatchey, W. S. Benedict, S. A. Clough, D. E. Burch, R. F. Calfee, K. Fox, L. S. Rothman, J. S. Garing, AFCRL atmospheric absorption line parameters compilation, Techn. Rep. AFCRLTR-0096, Air Force Cambridge Research Lab., 1973, 87 pp.

[8] L. S. Rothman et al., “The HITRAN2012 molecular spectroscopic database”, J. Quant. Spectrosc. and Radiat. Transfer, 130 (2013), 4–50

[9] A. A. Arking, K. Grossman, “The Influence of Line Shape and Band Structure on Temperatures in Planetary Atmospheres”, J. Atmos. Sci., 29 (1972), 937–949

[10] D. A. Domoto, “Frequency integration for radiative transfer problems involving homogeneous non-gray gases: the inverse transmission function”, J. Quant. Spectrosc. and Radiat. Transfer, 14 (1974), 935–942

[11] M. D. Chou, A. A. Arking, “Computation of Infrared Cooling Rates in the H2O Bands”, J. Atmos. Sci., 37 (1980), 855–867

[12] G. L. Stephens, “The parameterization of radiation for numerical weather prediction and climate models”, Monthly Weather Review, 112 (1984), 826–867

[13] W. C. Wang, G. Y. Shi, “Total band absorptance and k-distribution function for atmospheric gases”, J. Quant. Spectrosc. and Radiat. Transfer, 39:5 (1988), 387–397

[14] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Khokhlov, “Metod podgrupp dlia ucheta rezonansnoi struktury sechenii v neitronnykh raschetakh, 1”, Atomnaia energiia, 29:1 (1970), 11–16

[15] M. N. Nikolaev, A. A. Ignatov, N. V. Isaev, V. F. Khokhlov, “Metod podgrupp dlia ucheta rezonansnoi struktury sechenii v neitronnykh raschetakh, 2”, Atomnaia energiia, 30:5 (1971), 426–430 | Zbl

[16] M. N. Nikolaev, D. A. Usikov, “Formulirovka granichnykh uslovii v metode podgrupp”, Atomnaia energiia, 34:2 (1973), 112

[17] V. V. Sinitsa, M. N. Nikolaev, “Analiticheskii metod polucheniia podgruppovykh parametrov”, Atomnaia energiia, 35:6 (1973), 429–430

[18] M. N. Nikolaev, B. G. Riazanov, M. M. Savoskin, A. M. Tsibulia, Mnogogruppovoe priblizhenie v teorii perenosa neitronov, Energoatomizdat, M., 1984, 256 pp.

[19] D. E. Cullen, “Application of the probability tabel method to multigroup calculations of neutron transport”, J. Nuclear Science and Engineering, 55 (1974), 387–400

[20] D. E. Cullen, “Nuclear cross section preparation”, The CRC handbook of nuclear reactor calculations, v. 1, ed. Y. Ronen, CRC Press, Boca Raton, 1986, 15–131

[21] D. E. Cullen, “Nuclear data preparation”, Handbook of nuclear engineering, v. 1, ed. D. G. Cacuci, Springer Science, NY, 2010, 279–425

[22] V. F. Khokhlov, V. D. Tkachev, V. L. Reitblat, I. H. Sheino, “Podgruppovoi metod ucheta prostranstvennogo raspredeleniia nerasseiannykh i odnokratno rasseiannykh neitronov v mnogogruppovykh raschetakh zashchity”, Atomnaia energiia, 44:4 (1978), 324–327

[23] V. B. Tebin, M. S. Iudkevich, “Obobshchennyi podgruppovoi podkhod k raschetu rezonansnogo pogloshcheniia neitronov”, Atomnaia energiia, 59:2 (1985), 96–101

[24] L. V. Maiorov, M. S. Iudkevich, Neitronno-fizicheskie konstanty v raschetakh reaktorov na teplovykh neitronakh, Seriia Fizika i tekhnika iadernykh reaktorov, 34, Energoatomizdat, M., 1988, 136 pp.

[25] V. M. Krivtsov, “Ob odnom podhode k raschetu selektivnogo izluchenia”, Zh. Vychisl. Mat. Mat. Fiz., 14:6 (1974), 1595–1599

[26] V. M. Ovsiannikov, Uchet selektivnosti pogloshcheniia izlucheniia v giperzvukovom potoke gaza, Nauka, M., 1983, 152 pp.

[27] M. F. Modest, “The weighted-sum-of-gray-gases model for arbitrary solution methods in radiative transfer”, ASME Journal of Heat Transfer, 113:3 (1991), 650–656

[28] M. K. Denison, B. W. Webb, “A spectral line based weighted-sum-of-gray-gases model for arbitrary RTE solvers”, ASME Journal of Heat Transfer, 115 (1993), 1004–1012

[29] V. M. Krivtsov, “O raschete selektivnogo izluchenia”, Dinamika izluchaiushego gaza, 2, ed. Iu. D. Shmyglevckii, Izd. Vychisl. Tsentra AN SSSR, M., 1976, 36–41 | Zbl

[30] D. E. Cullen, G. C. Pomraning, “The Multiband Method in Radiative Transfer Calculations”, J. Quant. Spectrosc. and Radiat. Transfer, 24 (1980), 97–117

[31] Math. modeling (Soviet), 3:1 (1991), 12–20

[32] A. V. Shilkov, “Metody osredneniia sechenii i energeticheskogo spektra v zadachakh perenosa neitronov”, Matemat. modelirovanie, 3:2 (1991), 63–81

[33] A. V. Shilkov, “Generalized Multigroup Approximation and Lebesgue Averaging Method in Particle Transport Problems”, Transp. Theory and Stat. Physics, 23:6 (1994), 781–814 | Zbl

[34] A. V. Shilkov, I. L. Tsvetkova, S. V. Shilkova, “Sistema ATRAD dlia raschetov atmosfernoi radiatsii: lebegovskoe osrednenie spektrov i sechenii pogloshcheniia”, Matem. model., 9:6 (1997), 3–24

[35] A. A. Lacis, V. Oinas, “A Description of the Correlated K-distribution Method for Modeling Nongray Gaseous Absorption, Thermal Emission, and Multiple Scattering in Vertically Inhomogeneous Atmospheres”, J. Geophysical Research, 96:D5 (1991), 9027–9063

[36] R. M. Goody, Y. L. Yung, Atmospheric Radiation: Theoretical Basis, 2-nd edition, Oxford Univ. Press, NY, 1989, 535 pp.

[37] R. Goody, R. West, L. Chen, D. Crisp, “The correlated-k method for radiation calculations in nonhomogeneous atmospheres”, J. Quant. Spectrosc. and Radiat. Transfer., 42:6 (1989), 539–550

[38] Q. Fu, K. N. Liou, “On the correlated k-distribution method for radiative transfer in nonhomogeneous atmospheres”, J. Atmos. Sci., 49 (1992), 2139–2156

[39] P. Riviere, A. Soufiani, J. Taine, “Correlated-k and Fictitious Gas Methods for H2O near 2.7 $\mu$m”, J. Quant. Spectrosc. Radiative Transfer, 48 (1992), 187–203

[40] P. Riviere, A. Soufiani, J. Taine, “Correlated-k and Fictitious Gas Model for H2O Infrared Radiation in the Voigt Regime”, J. Quant. Spectrosc. Radiative Transfer, 53 (1995), 335–346

[41] P. G. J. Irwin, S. B. Calcutt, F. W. Taylor, A. L. Weir, “Calculated k distribution coefficients for hydrogen- and self-broadened methane in the range 2000–9500 cm(-1) from exponential sum fitting to band-modelled spectra”, J. Geophysical Research, 101:E11 (1996), 137–154

[42] E. J. Mlawer, S. J. Taubman, P. D. Brown, M. J. Iacono, S. A. Clough, “Radiative transfer for inhomogeneous atmospheres: RRTM, a validated correlated-k model for the longwave”, J. of Geophysical Research, 102:D14 (1997), 16,663–16,682

[43] K. M. Firsov, A. A. Mitsel, Yu. N. Ponomarev, I. V. Ptashnik, “Parametrization of transmittance for application in atmospheric optics”, J. Quant. Spectrosc. and Radiat. Transfer, 59:3–5 (1998), 203–213

[44] S. D. Tvorogov, “Primenenie riadov eksponent dlia integrirovaniia uravneniia perenosa po chastote”, Optika atmosfery i okeana, 12:9 (1999), 763–766

[45] A. A. Mitsel, K. M. Firsov, B. A. Fomin, Perenos opticheskogo izlucheniia v molekuliarnoi atmosfere, STT, Tomsk, 2001, 444 pp.

[46] M. Z. Jacobson, “A Refined Method of Parameterizing Absorption Coefficients among Multiple Gases Simultaneously from Line-by-Line Data”, J. of the Atmospheric Sciences, 62 (2005), 506–517

[47] B. Fomin, M. P. Correa, “A k-distribution technique for radiative transfer simulation in inhomogeneous atmosphere. 2: FKDM, fast k-distribution model for the shortwave”, J. Geophysical Research, 110 (2005), D02106, 10 pp.

[48] W. Zdunkowski, T. Trautmann, A. Bott, Radiation in the atmosphere. A course in theoretical meteorology, Cambridge University Press, NY, 2007, 497 pp.

[49] S. D. Tvorogov, T. B. Zhuravleva, O. B. Rodimova, K. M. Firsov, “Theory of series of exponents and their application for analysis of radiation processes”, Global Climatology and Ecodynamics: Anthropogenic Changes to Planet Earth, ed. P. Cracknell, V. F. Krapivin, C. A. Vaotsos, Springer, Berlin, 2008, 211–240

[50] M. K. Denison, B. W. Webb, “An absorption-line blackbody distribution function for efficient calculation of total gas radiative transfer”, J. Quant. Spectrosc. and Radiat. Transfer, 50 (1993), 499–510

[51] M. K. Denison, B. W. Webb, “The spectral-line-based weighted-sum-of-gray-gases model in nonisothermal nonhomogeneous media”, ASME Journal of Heat Transfer, 117 (1995), 359–365

[52] M. K. Denison, B. W. Webb, “Development and application of an absorption line blackbody distribution function for CO2”, Int. J. of Heat and Mass Transfer, 38 (1995), 1813–1821

[53] M. K. Denison, B. W. Webb, “The spectral-line weighted-sum-of-gray-gases model for H2O/CO2 mixtures”, ASME Journal of Heat Transfer, 117 (1995), 788–792

[54] P. Riviere, A. Soufiani, M. Y. Perrin, H. Riad, A. Gleizes, “Air mixture radiative property modelling in the temperature range 10,000–40,000 K”, J. Quant. Spectrosc. and Radiat. Transfer, 56:1 (1996), 29–45

[55] M. F. Modest, H. Zhang, “The full-spectrum correlated-k distribution for thermal radiation from molecular gas-particulate mixtures”, ASME J. Heat Transfer, 124:1 (2002), 30–38

[56] M. F. Modest, “Narrow-band and full-spectrum k-distributions for radiative heat transfer?correlated-k vs. scaling approximation”, J. Quant. Spectrosc. and Radiat. Transfer, 76:1 (2003), 69–83

[57] M. F. Modest, Radiative heat transfer, Third Edition, Elsevier, NY, 2013, 897 pp.

[58] G. P. Anderson, S. A. Clough et al., AFGL Atmospheric Constituent Profiles (0–120 km), AFGL-TR-860110, Environmental Research Papers, No 954, US Air Force Geophysics Laboratory, Hanscom, Massachusetts, 1986, 46 pp.

[59] S. V. Mozheyko, I. L. Tsvetkova, A. V. Shilkov, “The calculation of radiative transfer in a hot air”, Matem. model., 4:1 (1992), 65–82

[60] A. V. Shilkov, S. V. Shilkova, “Sistema ATRAD dlia raschetov atmosfernoi radiatsii: raschety perenosa teplovogo izlucheniia dlia bezoblachnoi letnei atmosfery srednikh shirot”, Matem. model., 11:1 (1999), 18–24

[61] E. N. Aristova, V. Ia. Goldin, A. V. Shilkov, S. V. Shilkova, “Sistema ATRAD dlia raschetov atmosfernoi radiatsii: raschety perenosa solnechnogo izlucheniia dlia letnei atmosfery srednikh shirot”, Matem. model., 11:5 (1999), 117–125

[62] A. V. Shilkov, “Chetno-nechetnye kineticheskie uravneniia perenosa chastits. 2: Konechno-analiticheskaia kharakteristicheskaia skhema dlia odnomernykh zadach”, Matem. model., 26:7 (2014), 33–53 | Zbl

[63] A. V. Shilkov, M. N. Gertsev, E. N. Aristova, S. V. Shilkova, “Metodika etalonnykh “line-by-line” raschetov atmosfernoi radiatsii”, Kompiuternye issledovaniia i modelirovanie, 4:3 (2012), 553–562 | Zbl