New conception of the discrete sources method in the electromagnetic scattering problems
Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 3-12 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

New concept of the Discrete Sources Method enabling to investigate penetrable scatterers with high size parameters has been suggested and realized. It has been shown that Total Scattering Cross-Section can be calculated analytically based on the discrete sourced amplitudes. Numerical results demonstrating the essential challenge of the new conception compared to the conventional one have been presented.
Keywords: electromagnetic waves scattering, penetrable particles with high size parameter, Discrete Sources Method, numerical scheme.
@article{MM_2015_27_8_a0,
     author = {N. V. Grishina and Yu. A. Eremin and A. G. Sveshnikov},
     title = {New conception of the discrete sources method in the electromagnetic scattering problems},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {3--12},
     year = {2015},
     volume = {27},
     number = {8},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_8_a0/}
}
TY  - JOUR
AU  - N. V. Grishina
AU  - Yu. A. Eremin
AU  - A. G. Sveshnikov
TI  - New conception of the discrete sources method in the electromagnetic scattering problems
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 3
EP  - 12
VL  - 27
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_8_a0/
LA  - ru
ID  - MM_2015_27_8_a0
ER  - 
%0 Journal Article
%A N. V. Grishina
%A Yu. A. Eremin
%A A. G. Sveshnikov
%T New conception of the discrete sources method in the electromagnetic scattering problems
%J Matematičeskoe modelirovanie
%D 2015
%P 3-12
%V 27
%N 8
%U http://geodesic.mathdoc.fr/item/MM_2015_27_8_a0/
%G ru
%F MM_2015_27_8_a0
N. V. Grishina; Yu. A. Eremin; A. G. Sveshnikov. New conception of the discrete sources method in the electromagnetic scattering problems. Matematičeskoe modelirovanie, Tome 27 (2015) no. 8, pp. 3-12. http://geodesic.mathdoc.fr/item/MM_2015_27_8_a0/

[1] M. I. Mishchenko, Electromagnetic Scattering by Particles and Particle Groups: An Introduction, Cambridge University Press, Cambridge, 2014

[2] T. Rother, M. Kahnert, Electromagnetic wave scattering on non-spherical particles. Basic methodology and simulations, Springer, Berlin, 2014

[3] M. I. Mishchenko, N. T. Zakharova, N. G. Khlebtsov, T. Wriedt, G. Videen, “Comprehensive thematic T-matrix reference database: A 2013–2014 update”, J. Quantitative Spectroscopy and Radiative Transfer, 146 (2014), 349–354

[4] D. J. Wielaard, M. I. Mishchenko, A. Macke, B. E. Carlson, “Improved T-matrix computations for large, nonabsorbing and weakly absorbing nonspherical particles and comparison with geometrical-optics approximation”, Appl. Opt., 36:18 (1997), 4305–4313

[5] L. Bi, P. Yang, G. W. Kattawar, M. I. Mishchenko, “A numerical combination of extended boundary condition method and invariant imbedding method to light scattering by large spheroids and cylinders”, J. Quantitative Spectroscopy and Radiative Transfer, 123 (2013), 17–22

[6] Iu. A. Eremin, A. G. Sveshnikov, “Metod diskretnykh istochnikov v zadachakh rasseianiia elektromagnitnykh voln”, Uspekhi sovremennoi radioelektroniki, 2003, no. 10, 3–40

[7] N. V. Grishina, Yu. A. Eremin, A. G. Sveshnikov, “Analysis of the extreme scatterers by Discrete Sources Method”, Moscow University, Physics Bulletin, 57:2 (2003), 16–21

[8] H. Tang, “Inversion of spheroid particle size distribution in wider size range and aspect ratio range”, Thermal Sci., 17 (2013), 1395–1402

[9] N. V. Grishina, Yu. A. Eremin, A. G. Sveshnikov, “Investigation of plasmon resonances in local structures by the Discrete Sources Method”, Moscow University, Physics Bulletin, 65:6 (2011), 552–556

[10] V. G. Farafonov, V. B. Il'in, A. A. Vinokurov, “Near- and Far-Field Light Scattering by Nonspherical Particles: Applicability of Methods that Involve a Spherical Basis”, Optics and Spectroscopy, 109:3 (2010), 432–443

[11] P. Barber, C. Yeh, “Scattering of electromagnetic waves by arbitrarily shaped dielectric bodies”, Appl. Opt., 14 (1975), 2864–2872