Numerical analysis of SAXS-data from vesicular systems by asynchronous differential evolution method
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 58-64.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the analysis of the experimental data on the small angle synchrotronous scattering on the DMPC unilamellar vesicles polidispersed population the separated form factor model, which include the fluctuations of the membrane thickness, have been formulated. The parameters of the model have been estimated by the ADE method. Сomparison of efficiency of different optimizing procedures for solving this problem has been performed. It was shown that the probability to find solution of this optimization problem with the help of ADE-methods is significantly higher in comparison with SIMPLEX and MIGRAD methods.
Keywords: asynchronous differential evolution, global optimization, parallel calculations, separated form-factor method, small angle synchrotronous scattering, unilamellar vesicles DMPC.
@article{MM_2015_27_7_a9,
     author = {E. I. Zhabitskaya and E. V. Zemlyanaya and M. A. Kiselev},
     title = {Numerical analysis of {SAXS-data} from vesicular systems by asynchronous differential evolution method},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {58--64},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a9/}
}
TY  - JOUR
AU  - E. I. Zhabitskaya
AU  - E. V. Zemlyanaya
AU  - M. A. Kiselev
TI  - Numerical analysis of SAXS-data from vesicular systems by asynchronous differential evolution method
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 58
EP  - 64
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a9/
LA  - ru
ID  - MM_2015_27_7_a9
ER  - 
%0 Journal Article
%A E. I. Zhabitskaya
%A E. V. Zemlyanaya
%A M. A. Kiselev
%T Numerical analysis of SAXS-data from vesicular systems by asynchronous differential evolution method
%J Matematičeskoe modelirovanie
%D 2015
%P 58-64
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a9/
%G ru
%F MM_2015_27_7_a9
E. I. Zhabitskaya; E. V. Zemlyanaya; M. A. Kiselev. Numerical analysis of SAXS-data from vesicular systems by asynchronous differential evolution method. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 58-64. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a9/

[1] E. I. Zhabitskaia, E. V. Zemlianaia, M. F. Kiselev, “Issledovanie struktury odnosloinikh vezikul DMPC s ispolzovaniem parallelnogo algoritma asinkhronnoi differentsialnoi evoliutsii”, Vestnik Rossijskogo universiteta druzhby narodov, seriia: Matematika. Informatika. Fizika, 2014, no. 2, 253–259

[2] M. A. Kiselev, E. V. Zemlyanaya, E. I. Zhabitskaya, V. L. Aksenov, “Investigation into the Structure of Unilamellar Dimyristoylphosphocholine Vesicles in Aqueous Sucrose Solutions by Small-Angle Neutron and X-Ray Scattering”, Сrystallography Reports, 60:1 (2015), 143–147

[3] E. I. Zhabitskaya, M. V. Zhabitsky, “Asynchronous Differential Evolution”, Lecture Notes in Computer Science, 7125, Springer, 2012, 328–333

[4] E. I. Zhabitskaia, M. V. Zhabitskii, “Reshenie optimizatsionnykh zadach na raspredelennikh vychislitelnikh sistemakh s pomoshchiu algoritma Asinkhronnoi Differentsialnoi Evoliutsii”, Matamaticheskoe Modelirovanie, 24:12 (2012), 33–37 | Zbl

[5] E. I. Zhabitskaya, M. V. Zhabitsky, “Asynchronous Differential Evolution with restart”, Lecture Notes in Computer Science, 8236, Springer, 2013, 555–561 | Zbl

[6] F. James, M. Roos, “Minuit — a system for function minimization and analysis of the parameter errors and correlations”, Computer Physics Communications, 10:6 (1975), 343–446

[7] E. I. Zhabitskaya, M. V. Zhabitsky, “Asynchronous Differential Evolution with Adaptive Correlation Matrix”, Proc. 15th Ann. Conf. on Genetic and Evolutionary Computation, USA, N.Y., 2013, 455–462

[8] E. I. Zhabitskaia, “Analiz slozhnykh vezikulyarnykh sistem s ispolzovaniem metoda asinkhronnoi differentsialnoi evoliutsii”, Sovremennye problemy prikladnoi matamatiki i informatiki, MPAMCS-2014, Tezisy dokladov mezhdunarodnoi molodezhnoi konferentsii-shkoly (Dubna, 25–29 avgusta 2014 g.), OIIAI, Dubna, 2014, 71–74, 173 pp.