On complexity of boolean matrix polynomials solving
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 25-30.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper investigates the problems of Boolean matrix polynomials solving and evaluating the number of the solvents. A method for matrix polynomial roots finding via solving the system of Boolean algebraic equations and well-known NP-complete problem “Satisfiability” is proposed. A comparison of techniques for solving Boolean matrix polynomials is provided. The paper shows results of computer experiments.
Mots-clés : matrix polynomials
Keywords: Boolean polynomials, Boolean Gröbner base, system of Boolean algebraic equations, SAT-solver.
@article{MM_2015_27_7_a4,
     author = {F. B. Burtyka},
     title = {On complexity of boolean matrix polynomials solving},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {25--30},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a4/}
}
TY  - JOUR
AU  - F. B. Burtyka
TI  - On complexity of boolean matrix polynomials solving
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 25
EP  - 30
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a4/
LA  - ru
ID  - MM_2015_27_7_a4
ER  - 
%0 Journal Article
%A F. B. Burtyka
%T On complexity of boolean matrix polynomials solving
%J Matematičeskoe modelirovanie
%D 2015
%P 25-30
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a4/
%G ru
%F MM_2015_27_7_a4
F. B. Burtyka. On complexity of boolean matrix polynomials solving. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 25-30. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a4/

[1] Ph. Burtyka, O. Makarevich, “Symmetric fully homomorphic encryption using decidable matrix equations”, Proceedings of the 7nd international conference on Security of information and networks, ACM, 2014, 240–243

[2] F. B. Burtyka, “Simmetrichnoe polnostiu gomomorfnoe shifrovanie s ispolzovaniem neprivodimykh matrichnykh polinomov”, Izvestiia Iuzhnogo federalnogo universiteta. Tekhnicheskie nauki, 158:9 (2014), 107–122

[3] I. Gohberg, P. Lancaster, L. Rodman, Matrix polynomials, SIAM, 2009 | Zbl

[4] J. E. Dennis, J. F. Traub, R. P. Weber, “The algebraic theory of matrix polynomials”, SIAM Journal on Numerical Analysis, 13:6 (1976), 831–845 | Zbl

[5] S. I. Gelfand, O chisle reshenii kvadratnogo uravneniia, Izdanie osushchestvleno pri podderzhke RFFI (izdatelskii proekt No 01-01-14022), 2004, 124 pp.

[6] N. Courtois et al., “Efficient algorithms for solving overdefined systems of multivariate polynomial equations”, Advances in Cryptology — EUROCRYPT 2000, Springer, Berlin–Heidelberg, 2000, 392–407 | Zbl

[7] G. M. Greuel, G. Pfister, H. Schonemann, “SINGULAR-A computer algebra system for polynomial computations”, Symbolic computation and automated reasoning, AK Peters, Ltd., 2001, 227–233

[8] http://www.cryptosystem.net/aes/tools.html

[9] N. Sorensson, N. Een, “Minisat v1. 13-a sat solver with conflict-clause minimization”, SAT (2005), 53

[10] B. De Cat, B. Bogaerts, M. Denecker, “MiniSAT (ID) for satisfiability checking and constraint solving”, ALP Newsletter, 2014