Simulation of spin-1/2 dynamics induced by laser field
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 129-136.

Voir la notice de l'article provenant de la source Math-Net.Ru

Dynamics of a charged spin-1/2 particle moving in a strong laser modelled by a monochromatic electromagnetic plane wave is studied. The full Heaviside–Lorentz interaction of charge with a high intensity radiation is taken into account without using of the dipole approximation, employing the exact solution to the classical equations of motion for charge. The effective Pauli equation with relativistic corrections for spin is derived. Based on the numeric studies of the derived equation the resonance character of the spin-flip process is predicted for a certain values of intensity and polarisation of the laser.
Keywords: spin, laser, quasi-classical approximation
Mots-clés : Riccati equation.
@article{MM_2015_27_7_a19,
     author = {A. M. Khvedelidze and I. A. Rogozhin},
     title = {Simulation of spin-1/2 dynamics induced by laser field},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {129--136},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a19/}
}
TY  - JOUR
AU  - A. M. Khvedelidze
AU  - I. A. Rogozhin
TI  - Simulation of spin-1/2 dynamics induced by laser field
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 129
EP  - 136
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a19/
LA  - ru
ID  - MM_2015_27_7_a19
ER  - 
%0 Journal Article
%A A. M. Khvedelidze
%A I. A. Rogozhin
%T Simulation of spin-1/2 dynamics induced by laser field
%J Matematičeskoe modelirovanie
%D 2015
%P 129-136
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a19/
%G ru
%F MM_2015_27_7_a19
A. M. Khvedelidze; I. A. Rogozhin. Simulation of spin-1/2 dynamics induced by laser field. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 129-136. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a19/

[1] G. Mourou, T. Tajima, “More intense, shorter pulses”, Science, 311 (2011), 41–42

[2] E. S. Sarachik, G. T. Schappert, “Classical theory of the scattering of intense laser radiation by free electrons”, Phys. Rev., D1 (1970), 2738–2753

[3] L. D. Landau, E. M. Lifshitz, The Classical Theory of Fields, Pergamon Press, Oxford, 1975, 404 pp.

[4] L. H. Thomas, “The motion of spinning electrons”, Nature, 117 (1926), 514

[5] P. Jameson, A. Khvedelidze, “Classical dynamics of a charged particle in laser field beyond the dipole approximation”, Phys. Rev., A77 (2008), 053403

[6] E. T. Whittaker, G. N. Watson, A Course of Modern Analysis, Cambridge University Press, 1996, 612 pp. | Zbl

[7] A. Khvedelidze, “Effect of a strong laser on spin precession”, Selected Problems of Modern Physics, Dubna, 2009, 365–367

[8] V. S. Popov, “Feynman disentangling of noncommuting operators and group representation theory”, Physics-Uspekhi, 177:12 (2007), 1217–1238