Pseudopotential carbon atom model in graphene lattice
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 122-128.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the formulation and approbation of the mathematical model describing an equilibrium state and properties of a graphene at a zero temperature. The model is based on integrated representation of pseudo-potential of hydrogen-like atom. This representation well is suitable for atoms of carbon in a graphene lattice. The model contains the parameters allowing to consider the local potential of an external field. Determination of parameters is made by a solution of a variation problem. Prospects of application of the developed model are connected with calculation of quantum states of carbon and silicon nanostructures. For example, use of the developed model will allow to connect a quantum state of atoms of a surface with emission current in a tunnel microscope or parameters of a virtual source of the edge emitter for probe electronoptical system.
Keywords: graphene lattice, pseudopotential of hydrogen-like atom, vawe function, integral representation, computer simulation.
@article{MM_2015_27_7_a18,
     author = {B. G. Freinkman},
     title = {Pseudopotential carbon atom model in graphene lattice},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {122--128},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a18/}
}
TY  - JOUR
AU  - B. G. Freinkman
TI  - Pseudopotential carbon atom model in graphene lattice
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 122
EP  - 128
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a18/
LA  - ru
ID  - MM_2015_27_7_a18
ER  - 
%0 Journal Article
%A B. G. Freinkman
%T Pseudopotential carbon atom model in graphene lattice
%J Matematičeskoe modelirovanie
%D 2015
%P 122-128
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a18/
%G ru
%F MM_2015_27_7_a18
B. G. Freinkman. Pseudopotential carbon atom model in graphene lattice. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 122-128. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a18/

[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306 (2004), 666–669

[2] A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, D. N. Krasikov, “Graphene: fabrication methods and thermophysical properties”, Physics-Uspekhi, 54 (2011), 227–258

[3] B. G. Freinkman, S. V. Polyakov, “Field emission from blade emitter taking into account curvature of its top”, Prikladnaya fizika, 2010, no. 3, 61–67

[4] D. I. Trubetskov, “Vakuumnaya mikroelektronika”, Sorosovskiy obrazovatelnyi zhurnal, 1997, no. 4, 58–64

[5] A. M. Dykhne, G. L. Yudin, Vnezapnye vozmushcheniya i kvantovaya evolutsiya, Redaktsiya zhurnala “Uspekhi phizicheskikh nauk”, M., 1996, 432 pp.

[6] W. Brandt, M. Kitagawa, “Effective stopping-power charges of swift ions in condensed matter”, Phys. Rev. B, 25:9 (1982), 5631–5637

[7] A. F. Nikiforov, I. G. Novikov, V. B. Uvarov, Kvantovo-statisticheskie modeli vysokotemperaturnoi plasmy, Fizmatlit, M., 2000, 400 pp.

[8] J. D. Jackson, Classical Electrodynamics, third ed., John Wiley Sons, Inc., NY, 1999, 832 pp. | Zbl

[9] H. A. Bethe, E. E. Salpeter, Quantum Mechanics of One- and Two- Electron Atoms, Springer-Verlag, Berlin, 1957, 368 pp. | Zbl

[10] A. A. Abrahamson, “Born–Mayer-type interatomic potential for neutral ground-state atoms with $Z=2$ to 105”, Phys. Rev., 178 (1969), 76–79