Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a18, author = {B. G. Freinkman}, title = {Pseudopotential carbon atom model in graphene lattice}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {122--128}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a18/} }
B. G. Freinkman. Pseudopotential carbon atom model in graphene lattice. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 122-128. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a18/
[1] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, “Electric Field Effect in Atomically Thin Carbon Films”, Science, 306 (2004), 666–669
[2] A. V. Eletskii, I. M. Iskandarova, A. A. Knizhnik, D. N. Krasikov, “Graphene: fabrication methods and thermophysical properties”, Physics-Uspekhi, 54 (2011), 227–258
[3] B. G. Freinkman, S. V. Polyakov, “Field emission from blade emitter taking into account curvature of its top”, Prikladnaya fizika, 2010, no. 3, 61–67
[4] D. I. Trubetskov, “Vakuumnaya mikroelektronika”, Sorosovskiy obrazovatelnyi zhurnal, 1997, no. 4, 58–64
[5] A. M. Dykhne, G. L. Yudin, Vnezapnye vozmushcheniya i kvantovaya evolutsiya, Redaktsiya zhurnala “Uspekhi phizicheskikh nauk”, M., 1996, 432 pp.
[6] W. Brandt, M. Kitagawa, “Effective stopping-power charges of swift ions in condensed matter”, Phys. Rev. B, 25:9 (1982), 5631–5637
[7] A. F. Nikiforov, I. G. Novikov, V. B. Uvarov, Kvantovo-statisticheskie modeli vysokotemperaturnoi plasmy, Fizmatlit, M., 2000, 400 pp.
[8] J. D. Jackson, Classical Electrodynamics, third ed., John Wiley Sons, Inc., NY, 1999, 832 pp. | Zbl
[9] H. A. Bethe, E. E. Salpeter, Quantum Mechanics of One- and Two- Electron Atoms, Springer-Verlag, Berlin, 1957, 368 pp. | Zbl
[10] A. A. Abrahamson, “Born–Mayer-type interatomic potential for neutral ground-state atoms with $Z=2$ to 105”, Phys. Rev., 178 (1969), 76–79