Voir la notice de l'article provenant de la source Math-Net.Ru
@article{MM_2015_27_7_a14, author = {S. V. Pikulin}, title = {A property of solutions of equations simulating certain chemical reactions about}, journal = {Matemati\v{c}eskoe modelirovanie}, pages = {97--102}, publisher = {mathdoc}, volume = {27}, number = {7}, year = {2015}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a14/} }
S. V. Pikulin. A property of solutions of equations simulating certain chemical reactions about. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 97-102. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a14/
[1] R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts, Clarendon Press, Oxford, 1975
[2] C. Bandle, R. P. Sperb, I. Stakgold, “Diffusion and reaction with monotone kinetics”, Nonlinear Anal., 8:4 (1984), 321–333 | Zbl
[3] J. I. Diaz, Nonlinear partial differential equations and free boundaries, v. 1, Research Notes in Mathematics, 106, Elliptic equations, Pitman, Boston, 1985, 322 pp. | Zbl
[4] V. A. Kondratiev, E. M. Landis, “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matematicheskii sbornik, 135 (177):3 (1988), 346–360 | Zbl
[5] S. V. Pikulin, “Behavior of solutions of semilinear elliptic equations in domains with complicated boundary”, Russian J. Math. Physics, 19:3 (2012), 401–404 | Zbl
[6] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer Verlag, Berlin, 1984, 530 pp.
[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York–London, 1968, 507 pp. | Zbl