A property of solutions of equations simulating certain chemical reactions about
Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 97-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider the effect of vanishing on an open subset of the domain of a non-trivial solution of a nonlinear equation of "reaction-diffusion" type. Such problem can simulate some of the chemical reactions that occur in the body of the grain of permeable catalyst. We obtain estimates of the size of that part of the domain in which the solution can be non-zero in terms of the distance from the point to the boundary. Explicit formulas for the constants involved in the estimations are given. The results may be useful in the construction of a numerical algorithm for solving the problem.
Mots-clés : model "reaction-diffusion"
Keywords: semilinear elliptic equation, Dirichlet problem, support of solutions, "dead core".
@article{MM_2015_27_7_a14,
     author = {S. V. Pikulin},
     title = {A property of solutions of equations simulating certain chemical reactions about},
     journal = {Matemati\v{c}eskoe modelirovanie},
     pages = {97--102},
     publisher = {mathdoc},
     volume = {27},
     number = {7},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/MM_2015_27_7_a14/}
}
TY  - JOUR
AU  - S. V. Pikulin
TI  - A property of solutions of equations simulating certain chemical reactions about
JO  - Matematičeskoe modelirovanie
PY  - 2015
SP  - 97
EP  - 102
VL  - 27
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/MM_2015_27_7_a14/
LA  - ru
ID  - MM_2015_27_7_a14
ER  - 
%0 Journal Article
%A S. V. Pikulin
%T A property of solutions of equations simulating certain chemical reactions about
%J Matematičeskoe modelirovanie
%D 2015
%P 97-102
%V 27
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/MM_2015_27_7_a14/
%G ru
%F MM_2015_27_7_a14
S. V. Pikulin. A property of solutions of equations simulating certain chemical reactions about. Matematičeskoe modelirovanie, Tome 27 (2015) no. 7, pp. 97-102. http://geodesic.mathdoc.fr/item/MM_2015_27_7_a14/

[1] R. Aris, The mathematical theory of diffusion and reaction in permeable catalysts, Clarendon Press, Oxford, 1975

[2] C. Bandle, R. P. Sperb, I. Stakgold, “Diffusion and reaction with monotone kinetics”, Nonlinear Anal., 8:4 (1984), 321–333 | Zbl

[3] J. I. Diaz, Nonlinear partial differential equations and free boundaries, v. 1, Research Notes in Mathematics, 106, Elliptic equations, Pitman, Boston, 1985, 322 pp. | Zbl

[4] V. A. Kondratiev, E. M. Landis, “O kachestvennykh svoistvakh reshenii odnogo nelineinogo uravneniya vtorogo poryadka”, Matematicheskii sbornik, 135 (177):3 (1988), 346–360 | Zbl

[5] S. V. Pikulin, “Behavior of solutions of semilinear elliptic equations in domains with complicated boundary”, Russian J. Math. Physics, 19:3 (2012), 401–404 | Zbl

[6] D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, Second edition, Springer Verlag, Berlin, 1984, 530 pp.

[7] O. A. Ladyzhenskaya, N. N. Uraltseva, Linear and Quasilinear Elliptic Equations, Academic Press, New York–London, 1968, 507 pp. | Zbl